Wine or Brandy? Block low rank vs block separable matrices

Cleve Ashcraft

Livermore Software Technology Corporation

14th Scheduling for Large Scale Systems Workshop Bordeaux, June 26 – 28, 2019

LSTC

Livermore Software Technology Corporation, est. 1986.

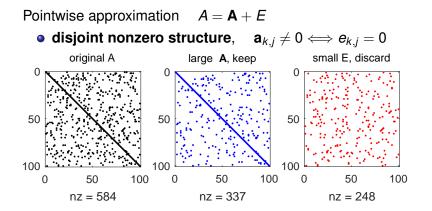
- engineering simulation software
- Iinear algebra group
 - Cleve Ashcraft
 François-Henry Rouet

 - Roger Grimes
 Eugene Vecharynski
 - Bob Lucas
 Clement Weisbecker
- electromechanics
 - Pierre L'Eplattenier
- transient acoustic fluid-structure interaction
 - Tom Littlewood

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Drop tolerance approximation



ヨト イヨト

Pointwise approximation $A = \mathbf{A} + E$

absolute tolerance,

$$\mathbf{A}_{k,j}
eq \mathbf{0} \Longrightarrow |\mathbf{a}_{k,j}| \ge \epsilon$$

• relative tolerance w.r.t. global max element

$$\mathbf{A}_{k,j}
eq \mathbf{0} \Longrightarrow rac{|oldsymbol{a}_{k,j}|}{\max_{i,l}|oldsymbol{a}_{i,l}|} \geq \epsilon$$

• relative tolerance w.r.t. diagonal elements

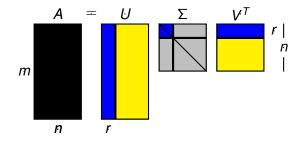
$$\mathbf{A}_{k,j}
eq \mathbf{0} \Longrightarrow rac{|m{a}_{k,j}|}{\sqrt{|m{a}_{k,k}m{a}_{j,j}|}} \geq \epsilon$$

- LSTC 2004 : did **not** work for BEM matrices, there are not many small entries to drop.
- Sparsification with a $\{0, 1\}$ function **did** not work.

We need a different definition of sparsity.

A low rank approximation from the SVD

From the singular value decomposition (SVD) $A = U \Sigma V^T$



- U and V have orthonormal columns, $U^T U = I$, $V^T V = I$
- Σ diagonal, real and nonnegative
- grey too small, yellow ignored, blue kept

伺き くほき くほう しほ

Block Matrices : BLR – Block Low Rank

• Our matrix A has a block row and column structure.

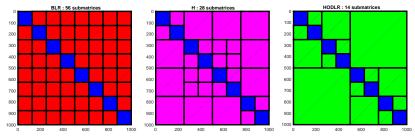
$$A = A_{\mathcal{M},\mathcal{M}} = \begin{bmatrix} A_{\mathcal{M}_{1},\mathcal{M}_{1}} & A_{\mathcal{M}_{1},\mathcal{M}_{2}} & \cdots & A_{\mathcal{M}_{1},\mathcal{M}_{N}} \\ A_{\mathcal{M}_{2},\mathcal{M}_{1}} & A_{\mathcal{M}_{2},\mathcal{M}_{2}} & \cdots & A_{\mathcal{M}_{2},\mathcal{M}_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ A_{\mathcal{M}_{N},\mathcal{M}_{1}} & A_{\mathcal{M}_{N},\mathcal{M}_{2}} & \cdots & A_{\mathcal{M}_{N},\mathcal{M}_{N}} \end{bmatrix}$$
(1)

- Submatrices are atomically distributed across processors
- Submatrices $A_{\mathcal{M}_i,\mathcal{M}_i}$ on the diagonal are square, dense, and well-conditioned.
- Off-diagonal submatrices are dense, but most have small numerical rank, although a few have large numerical rank

通 と く ヨ と く ヨ と

Blocking Strategies

Dense matrices from boundary element methods
 — electromagnetics, acoustics, heat transfer



BLR

HODLR

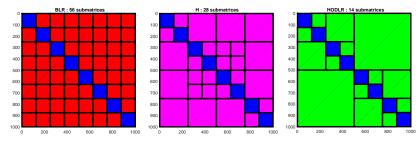
 BLR is a simplification of H-matrices diagonal blocks are dense,

off-diagonal blocks are dense, zero, or lowrank, (or sparse)

- 2004 : BLR in LS-DYNA for BEM matrices
- 2012 : BLR in MUMPS for sparse matrices

BLR – Block Low Rank

Dense matrices from boundary element methods
 — electromagnetics, acoustics, heat transfer



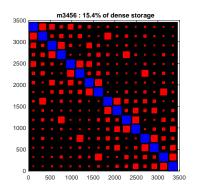
BLR H HODLR

- BLR in LS-DYNA for BEM matrices
 - 2004 : serial LDU factor and solve,
 - 2005 : MPI matrix splitting PCG/GMRES, MPI mmm and mvm
 - 2018 : pointwise MPP LDU factor and solve

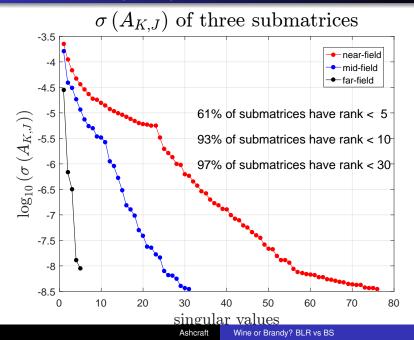
▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Matrix from underwater acoustic fluid structure interaction

- 3456 × 3456 dense
- 16 subdomains
- Blue matrices are dense
- Red matrices are low rank
- absolute tolerance = $1e^{-8}$



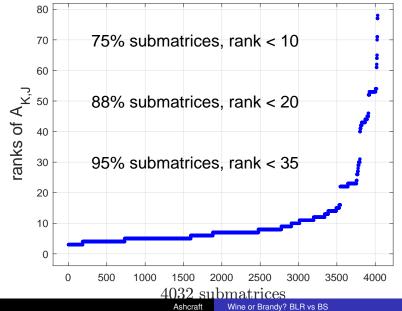
Reduced storage requirements : M3456



🖹 🔊 ९ (🖓

Reduced storage requirements : C10720

c10720 : ranks



Store and operate with low rank submatrices, A is BLR

- q = Ap matrix-vector multiply
- Q = AP matrix-matrix multiply, P and Q are BLR
- factor A = L U, $L L^T$, L D U, $L D L^T$,
- solve A u = f matrix-vector solve
- solve AU = F matrix-matrix solve, U and F are BLR

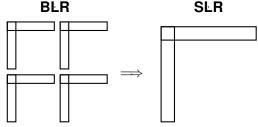
We know that BLR is not optimal w.r.t. storage,

since it is a special case of H-matrices.

▲圖 > ▲ 臣 > ▲ 臣 > 二 臣

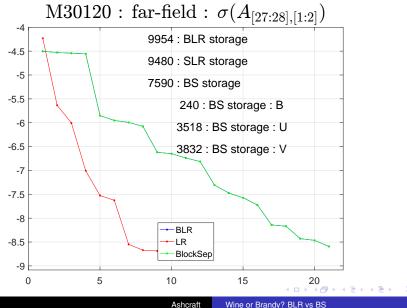
Example : BLR -> SLR (single low rank)

• Combine four submatrices into one submatrix



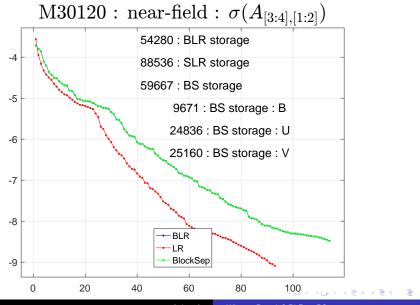
- Which approach uses less storage?
- 8rn versus 4sn
- breakeven point when s = 2r

Far field submatrices – better to combine



Wine or Brandy? BLR vs BS

Near field submatrices – better to leave separate



Ashcraft

Wine or Brandy? BLR vs BS

Building an H-matrix from a BLR matrix

- From the BLR matrix, build a coarse graph
 - vertex weights proportional to domain weight
 - edge weights proportional to submatrix rank
- Build a domain merge tree, (Metis, Scotch, etc), leaves are domains, the root is the entire graph
- Climb the merge tree, combine when appropriate

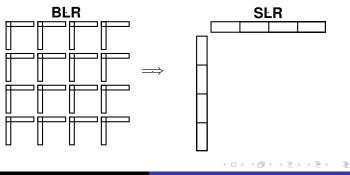
BLR to SLR and back to BLR

• Each submatrix has a low rank form, a = a, b = a, b = a, b = b, b = b,

e.g., $A_{1,13} = X_{1,\alpha} Y_{13,\alpha}^T$

• The large submatrix $A_{1:4,13:16}$ has a low rank form $A_{1:4,13:16} = X_{1:4,\beta} Y_{13:16,\beta}^T$

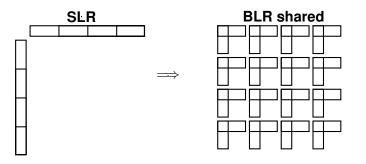
Sixteen submatrices combine their XY^T data into a new **single** low rank XY^T matrix.



Ashcraft Wine or Brandy? BLR vs BS

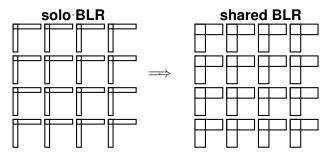
BLR to SLR and back to BLR

- Each submatrix has a **new** low rank form, e.g., $A_{1,13} = X_{1,\beta} Y_{13,\beta}^T$ where $X_{1,\beta}$ and $Y_{13,\beta}^T$ come from the H-matrix.
- X_{1,β} is larger than X_{1,α}, but X_{1,β} is shared among four submatrices.



通 とくほ とくほ とう

Two flavors of BLR



- Solo $A_{1,13} = X_{1,\alpha} Y_{13,\alpha}^T$, responsible for $X_{1,\alpha}$ and $Y_{13,\alpha}$.
- Shared $A_{1,13} = X_{1,\beta} Y_{13,\beta}^T$, responsible for 1/4 cost of $X_{1,\beta}$ and 1/4 cost of $Y_{13,\beta}$.

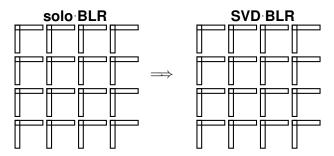
・ 同 ト ・ ヨ ト ・ ヨ ト …

3

BLR vs H-matrix

- H-matrix always better than BLR. How much better? Enough better to abandon the simpler BLR?
- **Shared** BLR can use the same storage as the best H-matrix ordering. (Minor mods to present code.)
- SLR compression **is** effective in the far field, and there are a lot of far field submatrices.
- SLR compression **is not** effective in the near field, and the near-field is where the entries are concentrated.
- How to distribute in a distributed environment?
- How to deal with load balance?

First step – compute the SVD of each submatrix.



E.g.,
$$A_{1,13} = X_{1,\alpha} Y_{13,\alpha}^T + E_{1,13}$$
 (2)

$$= (X_{1,\alpha} V_{\alpha,\alpha}) \Sigma_{\alpha,\alpha} U_{13,\alpha}^T + E_{1,13}$$

$$= U_{1,\alpha} \Sigma_{\alpha,\alpha} U_{13,\alpha}^T + E_{1,13}$$
where $||E_{1,13}||_2 < \epsilon$, $U_{1,\alpha}^T U_{1,\alpha} = I_{\alpha,\alpha} = U_{13,\alpha}^T U_{13,\alpha}$

Focus on the first block row with numeric rank s.

This is an dense $n \times 4n$ matrix, $O(n^2 s)$ operations for RRQR. We can get equivalent results with

$$T_{1,13:16} = \begin{bmatrix} U_{1,\alpha} \Sigma_{\alpha,\alpha} & U_{1,\gamma} \Sigma_{\gamma,\gamma} & U_{1,\delta} \Sigma_{\delta,\delta} & U_{1,\epsilon} \Sigma_{\epsilon,\epsilon} \end{bmatrix}$$
(5)
$$= X_{1,\beta} \begin{bmatrix} Z_{13,\beta}^T & Z_{14,\beta}^T & Z_{15,\beta}^T & Z_{16,\beta}^T \end{bmatrix}$$
(6)

for O(nrs) cost.

 $X_{1,\beta^{(1)}}$ is the shared column space of the first block row. $X_{2,\beta^{(2)}}$ is the shared column space of the second block row. ... etc ...

Focus on the first block column with numeric rank *s*.

E.g.,
$$A_{1:4,13} = \begin{bmatrix} A_{1,13} \\ A_{2,13} \\ A_{3,13} \\ A_{4,13} \end{bmatrix} = \begin{bmatrix} Z_{1,\nu} \\ Z_{2,\nu} \\ Z_{3,\nu} \\ Z_{4,\nu} \end{bmatrix} X_{13,\nu}^{T}$$
 (7)

This is an dense $4n \times n$ matrix, $O(n^2 s)$ operations for RRLQ. We can get equivalent results with an RRQR factorization of

$$T_{13,:} = \begin{bmatrix} (V_{13,\alpha} \Sigma_{\alpha,\alpha}) & (V_{13,\gamma} \Sigma_{\gamma,\gamma}) & (V_{13,\delta} \Sigma_{\delta,\delta}) & (V_{13,\epsilon} \Sigma_{\epsilon,\epsilon}) \end{bmatrix}$$
$$= X_{13,\nu^{(13)}} \begin{bmatrix} Y_{1,\nu^{(13)}}^T & Y_{2,\nu^{(13)}}^T & Y_{3,\nu^{(13)}}^T & Y_{4,\nu^{(13)}}^T \end{bmatrix}$$
(8)

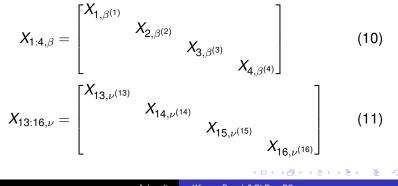
for O(nrs) cost.

 $X_{13,\nu^{(13)}}$ — shared row space of the first block column. $X_{14,\nu^{(14)}}$ — shared row space of the second block column. ... etc ...

The end result is to factor the 4 \times 4 block matrix into the product of three matrices.

$$A_{1:4,13:16} = X_{1:4,\beta} B_{\beta,\nu} X_{13:16,\nu}^{T}$$
(9)

The two outer matrices $X_{1:4,\beta}$ and $X_{13:16,\nu}$ are block diagonal, and each submatrix has orthonormal columns.

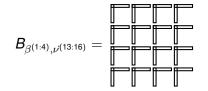


All "weight" of the matrix concentrated in central matrix $B_{\beta,\nu}$,

$$B_{\beta^{(1:4)},\nu^{(13:16)}} = \begin{bmatrix} B_{\beta^{(1)},\nu^{(13)}} & B_{\beta^{(1)},\nu^{(14)}} & B_{\beta^{(1)},\nu^{(15)}} & B_{\beta^{(1)},\nu^{(16)}} \\ B_{\beta^{(2)},\nu^{(13)}} & B_{\beta^{(2)},\nu^{(14)}} & B_{\beta^{(2)},\nu^{(15)}} & B_{\beta^{(2)},\nu^{(16)}} \\ B_{\beta^{(3)},\nu^{(13)}} & B_{\beta^{(3)},\nu^{(14)}} & B_{\beta^{(3)},\nu^{(15)}} & B_{\beta^{(3)},\nu^{(16)}} \\ B_{\beta^{(4)},\nu^{(13)}} & B_{\beta^{(4)},\nu^{(14)}} & B_{\beta^{(4)},\nu^{(15)}} & B_{\beta^{(4)},\nu^{(16)}} \end{bmatrix}$$

$$(12)$$

which is also BLR.



How much smaller is $B_{\beta^{(1:4)},\nu^{(13:16)}}$ than the original $A_{1:4,13:16}$?

Three ways to store 2 \times 2, 4 \times 4 and 8 \times 8 block submatrices.

- **BLR** block low rank, $X_i Y_i^T$
- SLR single low rank, XY^T
- **BS** block separable, $X_i B_{i,j} X_i^T$

	storage				
2×2 submatrix	BLR	SLR	BS	field	
[3 : 4] × [1 : 2]	50112	63072	45579	near	
[5 : 6] × [1 : 2]	49680	62208	45757	near	
[9 : 10] × [1 : 2]	44064	60480	43344	near	
[7 : 8] × [1 : 2]	18144	18144	14848	mid	
[11 : 12] × [1 : 2]	18576	18144	14353	mid	
[13 : 14] × [1 : 2]	19008	19008	14848	mid	
[15 : 16] × [1 : 2]	11664	6912	8100	far	

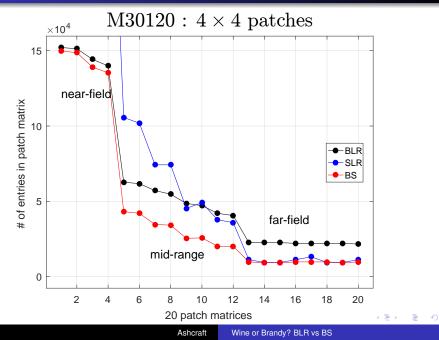
通 とく ヨ とく ヨ とう

Three ways to store submatrices.

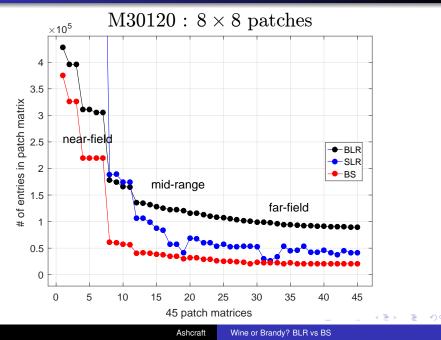
- **BLR** block low rank, $X_i Y_i^T$
- SLR single low rank, XY^T
- **BS** block separable, $X_i B_{i,j} X_i^T$

	storage				
4×4 submatrix	BLR	SLR	BS	field	
[5 : 8] × [1 : 4]	135648	247104	111288	near	
[9 : 12] × [1 : 4]	125712	240192	107592	near	
[13 : 16] × [1 : 4]	61344	69120	35660	mid	
8×8 submatrix	BLR	SLR	BS	field	
[9 : 16] × [1 : 8]	374112	974592	272308	near	

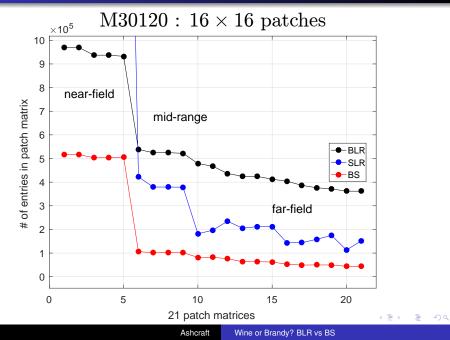
30120 dof and 128 domains



30120 dof and 128 domains



30120 dof and 128 domains



BLR, SLR or BS? or all three?

- BLR simplicity, good implementations
 - simple factor, solve, multiply
 - matrix-matrix multiply now low rank, not dense
 - · simple computations, task DAG easy to construct
 - during factorization, L_{K,I} and (D_{I,I}U_{I,J}) are shared among processors
- H-matrices SLR in each patch, many codes
- H-matrices BS in each patch, (new, sort of)
- BLR-shared use the best H-matrix decomposition, (new) point to submatrices, not owned, either SLR or BS

<ロ> (四) (四) (三) (三) (三)

HODLR-SLR or HODLR-BS ? or combination?

- HODLR, largest sized patches, fewest # of patches
- HODLR opposite BLR, other end of spectrum
- use SLR on each patch
 - large scale operations on entire patch
 - $q = Ap = XY^T p$ straightforward in MPP
- use BS on each patch
 - medium scale operations on block row or column
 - $q = Ap = XBY^T p$ less straightforward in MPP, the task DAG changes.
 - BS adds complexity to computation, reduces storage, reduces computations, orthonormal on the outside
- BS on near- and mid-field, SLR on far field ?

同 ト イヨ ト イヨ ト ・ ヨ ・ の へ ()

Summary

- Discard notion of {0,1} sparsity
 "Concentrate" matrix entries into the singular values, then drop small singular values
- Consider "patches" of low rank submatrices
 - H-SLR, known as H-matrices
 - H-BS, (new, L'Eplattenier's multicenter)
 - Both, cooperation \implies reduced storage, operations
- BS on all of $H_{\mathcal{M},\mathcal{M}}$ is **not** very effective
- BS on separate patches of $H_{\mathcal{M},\mathcal{M}}$ is very effective
- BS does not gain much from recursion on our patches, two levels is adequate for our present matrix sizes

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □