

Optimal Online Load Maximization with Commitment Samin Jamalabadi, Uwe Schwiegelshohn TU Dortmund University Chris Schwiegelshohn Sapienza University of Rome

$Pm|online, \varepsilon, commit|\sum p_j \cdot (1-U_j)$

- *Pm*: *m* parallel identical machines.
- online: jobs are submitted over time.
 - We do not know the existence nor any properties of future jobs.
- ε : a job J_j has deadline $d_j \ge r_j + \varepsilon \cdot p_j$ with constant slack parameter ε .
 - r_j: submission time of job J_j
 - *p_j*: processing time of job *J_j*
- *commit*: we must decide immediately after submission whether to reject a new job J_j ($U_j = 1$) or to accept it ($U_j = 0$).
 - For $U_j = 0$, we must also immediately fix the start time of the job.
 - We must complete every accepted job on time.
- $\sum p_j \cdot (1 U_j)$: we want to maximize the total processing time of all accepted jobs.

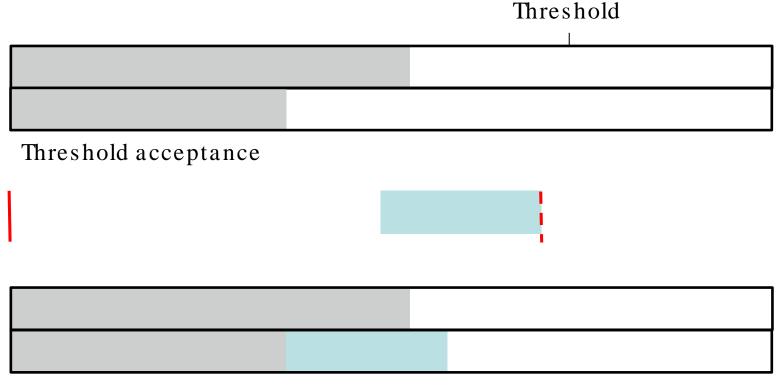
Algorithm Choices

Acceptance

Allocation

Timing

Acceptance Algorithms for P2



Greedy acceptance

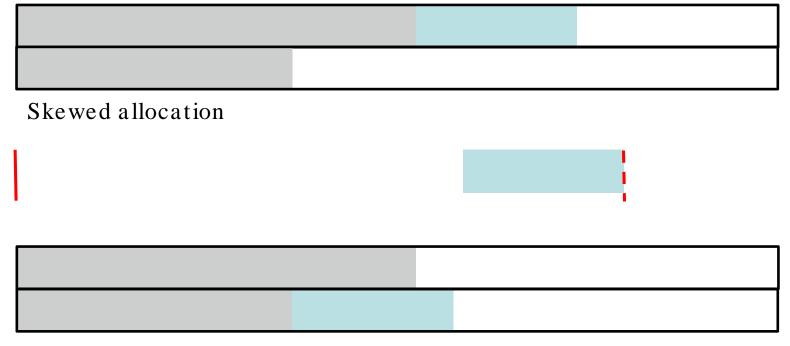
Friday, June 28, 2019

Algorithm Choices

- Acceptance
 - Greedy: the resulting schedule completes all accepted jobs on time.
 - Threshold: the deadline of an accepted job is at least as large as a deadline threshold.
- Allocation

Timing

Allocation for P2 with Greedy Acceptance



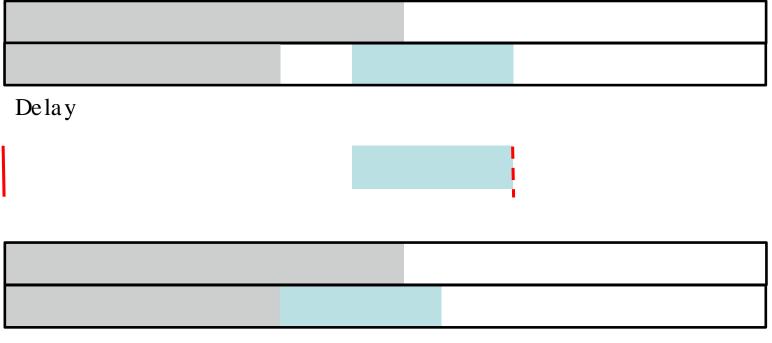
Balanced allocation

Friday, June 28, 2019

Algorithm Choices

- Acceptance
 - Greedy: the resulting schedule completes all accepted jobs on time.
 - Threshold: the deadline of an accepted job is at least as large as a deadline threshold.
- Allocation
 - Skewed: the candidate machine with the highest load
 - Balanced: the candidate machine with the minimal load (for greedy) or the candidate machine that increases the threshold by the smallest amount (for threshold).
- Timing

Job Starting for P2 with Greedy Acceptance



Semi-active

Friday, June 28, 2019

Algorithm Choices

- Acceptance
 - Greedy: the resulting schedule completes all accepted jobs on time.
 - Threshold: the deadline of an accepted job is at least as large as a deadline threshold.
- Allocation
 - Skewed: the candidate machine with the highest load
 - Balanced: the candidate machine with the minimal load (for greedy) or the candidate machine that increases the threshold by the smallest amount (for threshold).
- Timing
 - Semi-active: as early as possible on the allocated machine.
 - Delay: possible intermediate idle time on the allocated machine.

Threshold Calculation

- The machines are indexed in decreasing order of their outstanding loads.
- For machine m_i , we calculate a machine specific threshold using a function $f_i(\varepsilon)$ and the outstanding load of the machine at time t.

$$d_{lim,i}\Big|_t = load(m_i)\Big|_t \cdot f_i(\varepsilon) + t$$

• The threshold is the maximum of the machine specific thresholds.

$$d_{lim}\Big|_t = \max_{1 \le i \le m} d_{lim,i}\Big|_t$$

• We set $f_m(\varepsilon) = \frac{1+\varepsilon}{\varepsilon}$ and determine the remaining $f_i(\varepsilon)$ recursively. $\frac{m \cdot f_i(\varepsilon) + 1}{\sum_{h=1}^{i-1} f_i(\varepsilon) - (i-1) + 1} = const \text{ for } 1 \le i \le m$

Friday, June 28, 2019

Competitive Ratio

Threshold allocation with a skewed and semi-active schedule has the competitive ratio

 $m \cdot f_1(\varepsilon) + 1 \ge 2m + 1$ for $f_1(\varepsilon) \ge 2$.

• $\varepsilon_T = \arg \max\{f_1(\varepsilon) = 2\}$ decreases with increasing *m*.

m	2	3	4	5
ε_T	0.2857	0.0900	0.0291	0.0098

Greedy allocation with a skewed and semi-active schedule has the competitive ratio

$$\frac{1}{m} + \frac{1+\varepsilon}{\varepsilon} \text{ for } 0 < \varepsilon \leq 1.$$

Greedy Acceptance

Intuitively, greedy acceptance is the simplest approach.

• The competitive ratio of greedy acceptance is identical to the competitive ratio of the following min-threshold approach for $0 < \varepsilon \leq 1$:

$$d_{lim,i}\Big|_{t} = load(m_{i})\Big|_{t} \cdot \frac{1+\varepsilon}{\varepsilon} + t$$

$$d_{lim}|_t = \min_{1 \le i \le m} d_{lim,i} \Big|_t$$

Friday, June 28, 2019

Proof Concepts

- Key lemma for the (max-)threshold approach:
 - Allocation of a new job to a machine without the maximum outstanding load will turn this machine into the machine with the maximum outstanding load if $f_1(\varepsilon) \ge 2$ holds.
- Partitioning of the resulting schedule into several intervals
 - We determine how much load of every interval cannot be executed outside of this interval in any optimal schedule that has accepted the corresponding jobs.

Previous Results

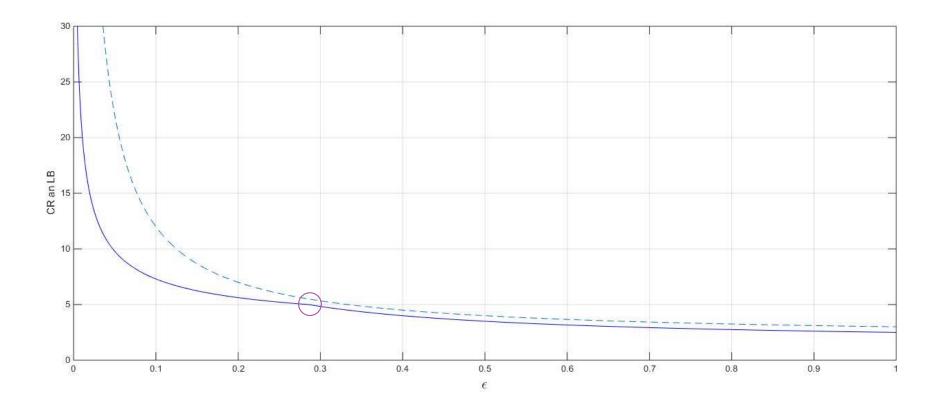
• For m = 1, greedy acceptance (Goldwasser 1999, 2003) with a semiactive schedule has the tight competitive ratio

$$1 + \frac{1+\varepsilon}{\varepsilon}$$
 for $0 < \varepsilon$.

• For m > 1, greedy allocation with a balanced and semi-active schedule has the competitive ratio (Kim, Chwa 2001)

$$1 + \frac{1+\varepsilon}{\varepsilon}$$
 for $0 < \varepsilon$.

Results for P2



Friday, June 28, 2019

Competitive Ratio

• Gap between greedy and (max-)threshold allocation at ε_T

m	2	3	4	5
Gap	0	5.44	26.61	92.24

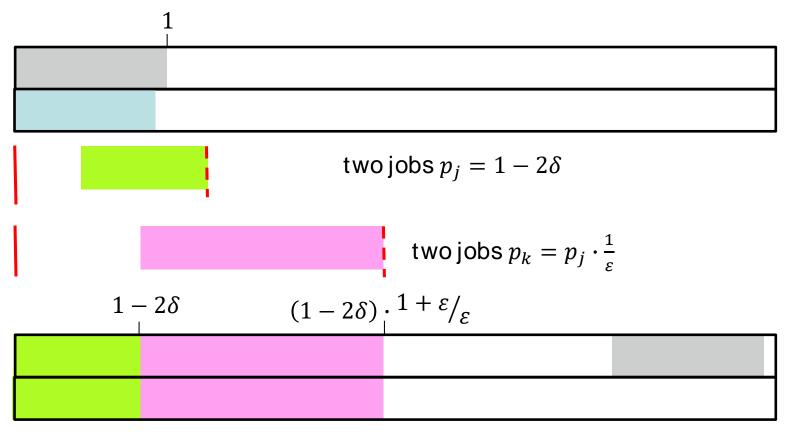
- For m > 2, we need m algorithms covering different intervals within (0,1].
- The algorithms are a combination of min-thresholds and max-thresholds.

Lower Bound for P2 and Greedy Allocation

optimal schedule c = 5

Friday, June 28, 2019

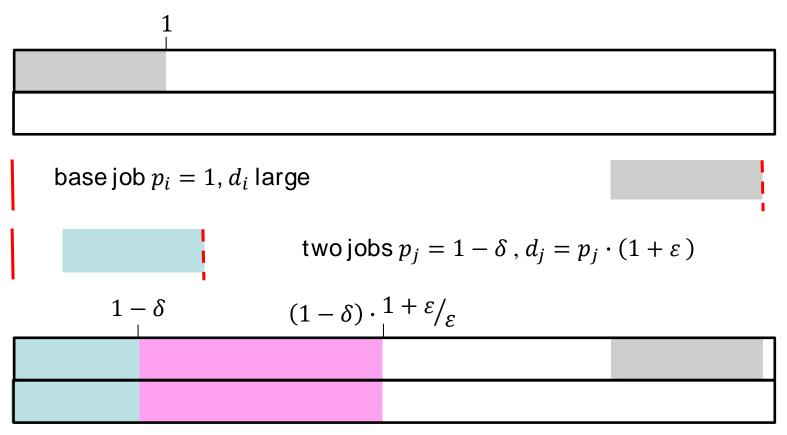
Lower Bound for P2 and Greedy Allocation



optimal schedule $c = (1 + 2 \cdot \frac{1+\varepsilon}{\varepsilon})/2$

Friday, June 28, 2019

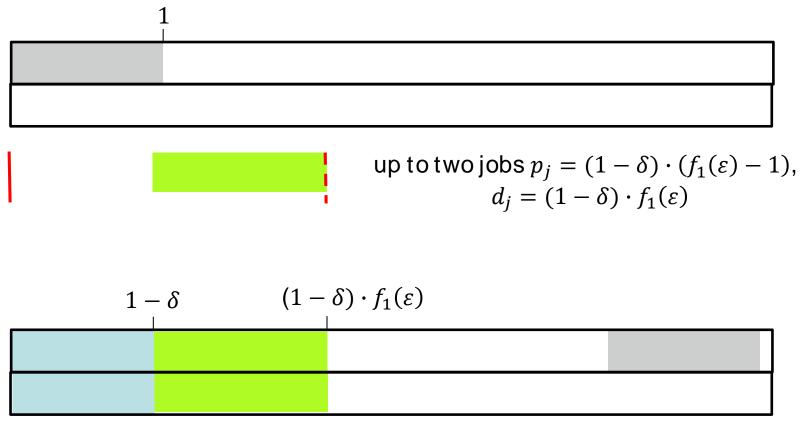
Lower Bound for P2 and (Max-)Threshold Allocation



optimal schedule $c = (1 + 2 \cdot \frac{1+\varepsilon}{\varepsilon})/2$

Friday, June 28, 2019

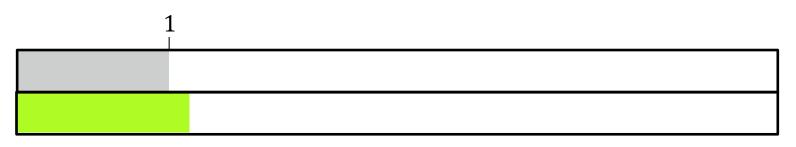
Lower Bound for P2 and (Max-)Threshold Allocation



optimal schedule $c = 1 + 2f_1(\varepsilon)$

Friday, June 28, 2019

Lower Bound for P2 and (Max-)Threshold Allocation



two jobs
$$p_k = (1 - \delta) \cdot \frac{1}{\varepsilon}$$

 $1 - \delta \qquad (1 - \delta) \cdot \frac{1 + \varepsilon}{\varepsilon}$

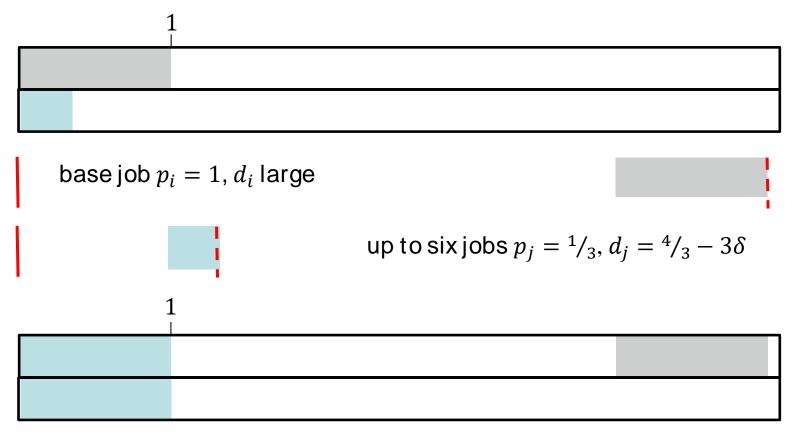
optimal schedule $c = (1 + 2 \cdot \frac{1 + \varepsilon}{\varepsilon}) / f_1(\varepsilon) = 1 + 2f_1(\varepsilon)$

Friday, June 28, 2019

Interval $(1, \infty)$ for ε

- The optimal competitive ratio is larger for any $\varepsilon \in (0,1]$ than the optimal competitive ratio for any $\varepsilon \in (1,\infty)$.
 - The problem becomes easier for $\varepsilon > 1$?
 - Previous results seem to support this claim.
- Observation: The presented optimal online algorithms for $\varepsilon \in (0,1]$ only use semi-active schedules avoiding any start-time problem
- It is not possible to obtain the competitive ratio $\frac{1}{m} + \frac{1+\varepsilon}{\varepsilon}$ for all $\varepsilon \in (1, \infty)$ when using only semi-active schedules.
 - We consider an example with $\varepsilon = 2$ and the P2 environment.
- Progression of time limits the competitive ratio for large ε and $m \ge 3$.

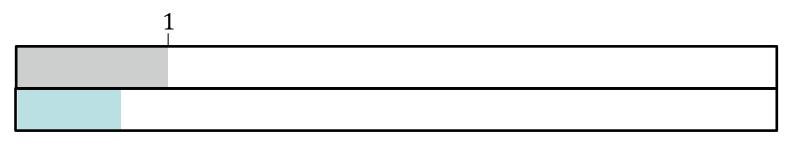
Lower Bound for P2, $\varepsilon = 2$, and Semi-active Schedules

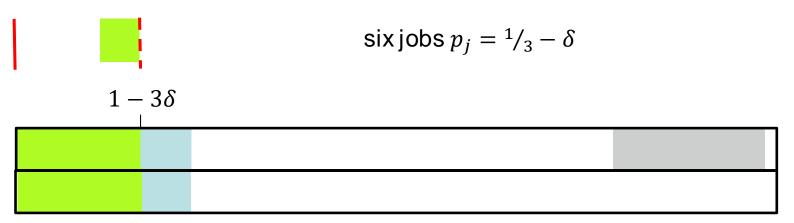


optimal schedule $c = \frac{9}{4}$

Friday, June 28, 2019

Lower Bound for *P*2, $\varepsilon = 2$, and Semi-active Schedules

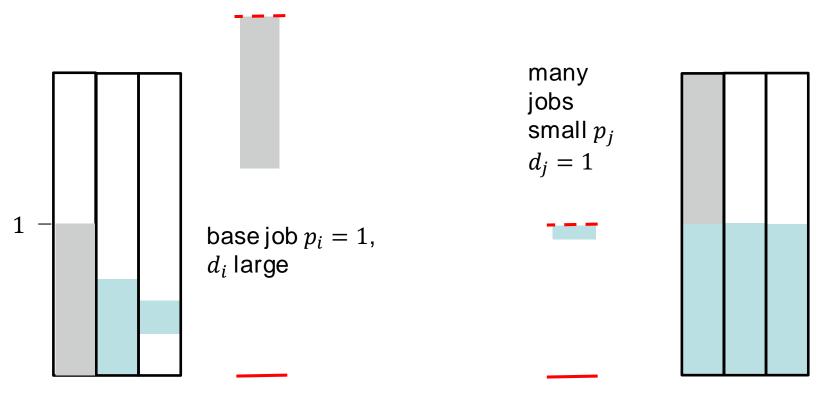




optimal schedule $c = \frac{11}{5}$

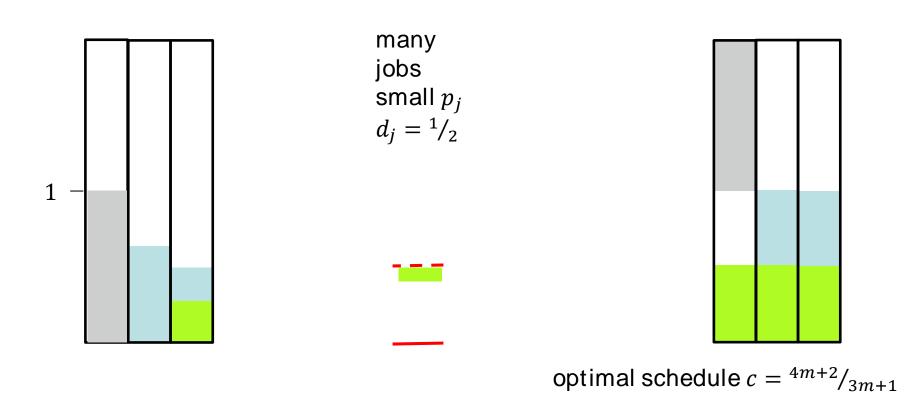
Friday, June 28, 2019

Lower Bound for Pm and Large ε



optimal schedule c = 2

Lower Bound for Pm and Large ε



Conclusion

- For the problem $Pm|online, \varepsilon, commit|\sum p_j \cdot (1-U_j)$, we presented online algorithms with an optimal competitive ratio for $0 < \varepsilon \leq 1$.
- The optimal algorithm consists of m different algorithms that are each valid for a subinterval of (0,1] of ε .
- The algorithms use thresholds, skewed allocation and semi-active schedules.
- For $\varepsilon > 1$, the optimal competitive ratio is smaller but the algorithms are more complicated.