
GraphBLAS: concepts, algorithms, and
applications

Aydın Buluç
Computational Research Division, LBNL
EECS Department, UC Berkeley

14th Scheduling Workshop
June 27, 2019. Bordeaux

Graphs in the language of matrices

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient
• Three possible levels of parallelism: searches, vertices, edges
• Highly-parallel implementation for Betweenness Centrality*

*: A measure of influence in graphs, based on shortest paths

BAT

à

AT � B
6

1 2

3

4 7 5

1 52 3 4 6
1

5

2
3
4

6

5

6

3

1 2

4

A1

A3
A2

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0

1 1
1 1

0 0 1

A1

A2 A3

x x =

Coarsening via sparse matrix-matrix products

2

1
2 1

Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments. SIAM Journal of Scientific Computing (SISC), 2012.

The GraphBLAS effort

• The GraphBLAS Forum: http://graphblas.org
• Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS):
http://hpc.pnl.gov/grapl/

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

http://graphblas.org
http://hpc.pnl.gov/grapl/

GraphBLAS Status: C API 1.2 released and in use
• Implementations of the GraphBLAS C specification:
– SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html
– IBM https://github.com/IBM/ibmgraphblas
– Test suite for validating an implementation of the C-spec from SEI/CMU

… to be released “soon”

• Systems using the GraphBLAS
– RedisGraph v1.0 preview release:

o RedisGraph is a graph database architecture implemented as a Redis
Module, using GraphBLAS sparse matrices for internal data representation
and linear algebra for query execution.

o https://redislabs.com/blog/release-redisgraph-v1-0-preview/
– Lincoln Labs GraphProcessor designed around the GraphBLAS.

• C++ bindings to the GraphBLAS
– GBTL from SEI/CMU: https://github.com/cmu-sei/gbtl
– GraphBLAST for GPUs: http://github.com/gunrock/graphblast

5

http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/IBM/ibmgraphblas
https://redislabs.com/blog/release-redisgraph-v1-0-preview/
https://github.com/cmu-sei/gbtl
http://github.com/gunrock/graphblast

GraphBLAST preliminary performance
[contact me for preprint]

sR
F-R

rk
sR

F-l
M

h0
9 L04

rP
at2

2

rP
at2

3

rP
at2

4
rg

g

rRa
GB

us
a

10−1

100

101

102

103

104

105

3H
rf

Rr
P

an
FH

 (0
T(

3S
)

B)S

sR
F-R

rk
sR

F-l
M

h0
9 L04

rP
at2

2

rP
at2

3

rP
at2

4
rg

g

rRa
GB

us
a

SSS3

sR
F-R

rk
sR

F-l
M

h0
9 L04

rP
at2

2

rP
at2

3

rP
at2

4
rg

g

rRa
GB

us
a

35

FR
au

thR
r

FR
Sa

SH
r

rRa
GB

FH
nt

sR
F-l

M

FLt
-Sa

t

FR
P-Rr

k

TC

SuLtHSSarsH
HarGwLrHG
LLgra
GunrRFk
GraShBLAST

6

Shown applications (more implemented)
• Breadth-first-search (BFS)
• Single-source shortest-path (SSSP)
• PageRank (PR)
• Triangle counting (TC)

Design principles:
1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

GraphBLAS C API
• A binding of the GraphBLAS math to the C programming language.

• Requires C99 extended with function polymorphism based on static-types
and number-of-parameters.
– All modern C compilers in common use today support these extensions

• Basic include file with function prototypes, types, and constants
– #include <GraphBLAS.h>

• Includes a few types and opaque objects (e.g. matrices and vectors) to give
implementations maximum flexibility

7

GrB_Index à An integer type used to set dimensions and index into arrays
GrB_Matrix à A 2D sparse array, row indices, column indices and values
GrB_Vector à A 1D sparse Array

–… plus additional opaque objects we’ll describe later (descriptors,
semirings, binary operators, and unary operators)

GraphBLAS C API: Basic definitions

• Opaque object: An object manipulated strictly through the GraphBLAS API
whose implementation is not defined by the GraphBLAS specification.

• Transparent object: an object whose structure is fully exposed to the
programmer. E.g.: an array of tuples <i, j, value>

• Method: Any C function that manipulates a GraphBLAS opaque object.

• Domain: the set of available values used for the elements of matrices, the
elements of vectors, and when defining operators.
– Examples are GrB_UINT64, GrB_INT32, GrB_BOOL, GrB_FP32

• Operation: a method that corresponds to an operation defined in the
GraphBLAS math spec. http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

– Examples: matrix multiply, matrix vector multiply, reduction, apply

8

http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

Design principles of the GraphBLAS C API

9

• Object-oriented
– All objects are opaque, represented by handles
– Only GraphBLAS methods can manipulate those objects

• Separation of data (matrices and vectors) and operations
– Only explicitly defined elements of a matrix or vector have values
– The “structural zeros” are undefined
– Any matrix/vector can be used with any semiring of compatible domain
– Semantics are defined so that the “zero” value does not matter (most of the

time)
• Blocking and nonblocking modes
– Blocking: each method completes before returning
– Nonblocking: methods may return early (must verify correctness of call)
– Facilitated by opaqueness of objects

• Procedural specification
– Semantics of each method is defined through process to compute output
– Any implementation that produces the same output is conforming

GraphBLAS C API Spec (h1p://graphblas.org)

• Goal: A crucial piece of the GraphBLAS effort is to translate the mathemaBcal
specificaBon to an actual ApplicaBon Programming Interface (API) that
i. is faithful to the mathemaBcs as much as possible, and

ii. enables efficient implementaBons on modern hardware.

• Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra

• Innova.on: FuncBon signatures (e.g. mxm, vxm, assign, extract), parallelism constructs
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (funcBons, monoids, and semiring)

A.Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.2.0

GrB_info GrB_mxm(GrB_Matrix *C, // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor desc]);

C(¬M) ⊕= AT ⊕.⊗ BT

http://graphblas.org/

Examples of semirings in graph algorithms

Real field: (R, +, x) Classical numerical linear algebra

Boolean algebra: ({0 1}, |, &) Graph connectivity

Tropical semiring: (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +) Graph matching &network alignment

(R, min, times) Maximal independent set

• Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
• Add: Traverses edges, Multiply: Combines edges/paths at a vertex
• Neither add nor multiply needs to have an inverse.
• Both add and multiply are associative, multiply distributes over add

1
2

3

4 7

6

5

AT

1

7

71
from

to

Breadth-first search in
the language of matrices

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

1

1

1

1

1parents:

Particular semiring operations:
Multiply: select2nd
Add: minimum

0

1
2

3

4 7

6

5

X

4

2

2

AT

1

7

71
from

to

ATX

à

2

4

4

2

24

Select vertex with
minimum label as parent

1

1parents:
4

2

2

0

1
2

3

4 7

6

5

X

3

AT

1

7

71
from

to

ATX

à
3

5

7
3

1

1parents:
4

2

2

5

3

0

• Masks avoid forma9on of
temporaries and can enable
automa9c direc9on op9miza9on

• These footballs are nonzeros that
are masked out by the parents array

XAT

1

7

71
from

to

ATX

à

6

1
2

3

4 7

6

5

BFS in GraphBLAS with Masks

Push-pull ≡ column-row matvec!

Pull Push

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18

Masks make “pull” implementable
in GraphBLAS

Row-based matvec w/ mask Column-based matvec w/ mask

• Pull is better for sufficiently sparse masks; push otherwise
• Claim: “direction optimization” would have been discovered

automatically by the GraphBLAS runtime if we designed the
interface back half a decade ago.

Sparse x

Dense

Matrix

(SpDM3)

Sparse x

Sparse

Matrix

(SpGEMM)

Sparse Matrix-

Multiple

Dense Vectors

(SpMM)

Sparse

Matrix-

Dense Vector

(SpMV)

Sparse

Matrix-

Sparse Vector

(SpMSpV)

Graph/Sparse/Dense BLAS functions (in increasing arithmetic intensity)

Partial

Correlation

Estimation

(CONCORD)

Clustering

(e.g., MCL,

Spectral

Clustering)

Logistic

Regression,

Support Vector

Machines

Dimensionality

Reduction

(NMF, CX, PCA)

Higher-level machine learning tasks

Deep Learning

(Neural Nets)

Dense

Matrix-

Vector

(BLAS2)

Dense

Matrix-

Matrix

(BLAS3)

Machine Learning relies a lot on Linear Algebra too

Execution modes
• A GraphBLAS program defines a DAG of operations.
• Objects are defined by the sequence of GraphBLAS method calls, but the

value of the object is not assured until a GraphBLAS method queries its
state.

• This gives an implementation flexibility to optimize the execution (fusing
methods, replacing method sequences by more efficient ones, etc.)

21

GrB_op1(A);
GrB_op2(B);
GrB_op3(C,A,B);

GrB_op1(A); GrB_op2(B);

GrB_op3(C,A,B);

• An execution of a GraphBLAS program defines a context for the library.
• The execution runs in one of two modes:
– Blocking mode … executes methods in program order with each method completing

before the next is called
– Non-Blocking mode … methods launched in order. Complete in any order consistent

with the DAG. Objects do not exit in fully defined state until queried.

• Most implementations only support Blocking mode.
SuiteSparse:GraphBLAS uses nonblocking for assign and setElement

Opportunities in non-blocking mode
• Suppose you are solving a linear system on the Kronecker product graph
• Actually happens when you are computing similarity between two graphs
• Using “graph kernels” enable machine learning on graph structures data,

such as proteins and other molecules.

• The Kronecker product itself has huge memory footprint and lots of
redundancy (NK+ML dimension but NKML apparent values)

22

N x M K x L

N*K x M*L

Opportunities in non-blocking mode
• The only way to write this in GraphBLAS or any other library we know of:

• What we would rather call:

• But that would result in API bloat and would lead us to a rabbit hole.

• There are many other examples:
– KFAC (optimization method for deep learning),
– Triple matrix product (graph contraction and AMG restriction),
– Triangle counting (who needs the list of triangles when all we need is the count)

• Solution: A JIT that performs automatic operator fusion

23

GrB_kronecker(C, …, A, B, …); // C=AÄB
GrB_mxv(y, …, C, x, …); // y=C x

GrB_kronxv(y, …, A, B, x …); // y= (AÄB) x

Status: GraphBLAS C API Specification v 1.3

New operations and methods
• Kronecker product (matrices)
• Apply w/ binary op. and scalar
• Edge (element) removal
• Resizing matrices/vectors

New built-in operators,
descriptors, and other things
• Structure-only masks
• Bitwise binary ops for integers
• GrB_LXNOR boolean binary op
• GrB_ANY binary op/monoid
• Built-in descriptors
• Built-in monoids and semirings

24

Specification clarifications
• Language regarding “implied zero”
• Disclaimers against over-specification
• Relaxing reduction to scalar

specification
• Clarifying distributive requirements
• Improving language about completions
• Removing language about annihilators
• Clarifying init() and finalize() errors
• Clarify aliasing requirements of user-

defined operators
• Define value of all enums

New and updated examples
• …but more in LAGraph

Acknowledgments

Ariful Azad, David Bader, Tim Davis, John Gilbert, Jeremy
Kepner, Nikos Kyrpides, Tim Mattson, Scott McMillan,
Jose Moreira, Lenny Oliker, John Owens, Christos
Ouzounis, Georgios Pavlopoulos, Oguz Selvitopi, Yu-Hang
Tang, Carl Yang, Kathy Yelick.

• The GraphBLAS Forum: http://graphblas.org
• My lab: http://passion.lbl.gov
• Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS):
http://hpc.pnl.gov/grapl/

http://graphblas.org
http://passion.lbl.gov/
http://hpc.pnl.gov/grapl/

[Extra] Some applications

Markov Cluster Algorithm (MCL)

27

Itera&on 1 Iteration 2 Iteration 3Initial network

Widely popular and successful algorithm for discovering
clusters in protein interaction and protein similarity networks

At each iteration:
Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM),
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– Smaller b: less parallelism, memory efficient (b=1 is equivalent

to sparse matrix-sparse vector mulAplicaAon used in MCL)
– Larger b: more parallelism, memory intensive

A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– HipMCL selects b dynamically as permitted by the available

memory
– The algorithm works in h=N/b phases where N is the number of

columns (vertices in the network) in the matrix

HipMCL: High-performance MCL

• MCL process is both computationally expensive and memory
hungry, limiting the sizes of networks that can be clustered

• HipMCL overcomes such limitation via sparse parallel algorithms.
• Up to 1000X times faster than original MCL with same accuracy.

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel
implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018

x =

!"## !"$#

!### !#$#

!$## !$$#

!""#

!#"#

!$"#

A A (or Ab) A2

Process row

Pr
oc

es
s

co
lu

m
n

Process Gridp × p

New shared-memory SpGEMM kernels

• Compression ratio (CR):

flops/nnz(C)

• Combinatorial BLAS and

HipMCL uses heap

• Stable performance but

significant gap in high CR

• HipMCL inputs have high

CR

Yusuke Nagasaka, Satoshi Matsuoka,

Ariful Azad, and Aydin Buluc. High-

performance sparse matrix-matrix products

on intel KNL and multicore architectures. In

ICPPW, 2018.

• We will integrate hash

algorithms to CombBLAS

and HipMCL

° bhsparse [1]

• Hybrid method for result matrix pre-allocation

- 3 strategies (heap-based,

• Parallel insert operations via fast merging

• Heuristic-based load balancing (bins)

° rmerge2 [2]

• Iterative row-merging

• Aggregate duplicate column indices via warp shuffles (merge ! = 32 rows)

• Requires no shared memory but many registers

• Grouping into cases for load balancing

[1] Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix
multiplication for irregular data." In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International, pp. 370-381. IEEE, 2014.

[2] Gremse, Felix, Kerstin Küpper, and Uwe Naumann. "Memory-Efficient Sparse Matrix-Matrix
Multiplication by Row Merging on Many-Core Architectures." SIAM Journal on Scientific
Computing 40, no. 4 (2018): C429-C449.

[3] Nagasaka, Yusuke, Akira Nukada, and Satoshi Matsuoka. "High-Performance and Memory-
Saving Sparse General Matrix-Matrix Multiplication for NVIDIA Pascal GPU." In 2017 46th
International Conference on Parallel Processing (ICPP), pp. 101-110. IEEE, 2017.

• nsparse [3]
• Linear probing shared-memory hash table
• Row grouping based on number of nonzero

elements or intermediate products (load
balancing)

• Warp shuffle and shared memory for
accumulations

• Concurrent kernel execution via streams

• Performance might differ depending on
• Compression rate
• Matrix structure
• GPU microarchitecture

SpGEMM on GPUs: tested libraries

If these authors implemented
the standard GrB_mxm, things
would be much more portable.
But we are still doing great
compared to 5+ years ago
when the SpGEMM primitive
wasn’t popular.

• bhsparse [1]
– Hybrid method for result matrix pre-allocation

• 3 strategies (heap-based,

– Parallel insert operations via fast merging
– Heuristic-based load balancing (bins)

• rmerge2 [2]
– Iterative row-merging
– Aggregate duplicate column indices via warp

shuffles (merge ! = 32 rows)
– Requires no shared memory but many registers
– Grouping into cases for load balancing

[1] Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix
multiplication for irregular data." In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International, pp. 370-381. IEEE, 2014.

[2] Gremse, Felix, Kerstin Küpper, and Uwe Naumann. "Memory-Efficient Sparse Matrix-Matrix
Multiplication by Row Merging on Many-Core Architectures." SIAM Journal on Scientific
Computing 40, no. 4 (2018): C429-C449.

[3] Nagasaka, Yusuke, Akira Nukada, and Satoshi Matsuoka. "High-Performance and Memory-
Saving Sparse General Matrix-Matrix Multiplication for NVIDIA Pascal GPU." In 2017 46th
International Conference on Parallel Processing (ICPP), pp. 101-110. IEEE, 2017.

• nsparse [3]
• Linear probing shared-memory hash table
• Row grouping based on number of nonzero

elements or intermediate products (load
balancing)

• Warp shuffle and shared memory for
accumulations

• Concurrent kernel execution via streams

• Performance might differ depending on
• Compression rate
• Matrix structure
• GPU microarchitecture

SpGEMM on GPUs: tested libraries

If these authors implemented the
standard GrB_mxm, things would
be much more portable. But we
are still doing great compared to
5+ years ago when the SpGEMM
primitive wasn’t popular.

LACC: Parallel Connected Components

Parallel connected components for cluster identification (after
MCL iterations converge): Awerbuch-Shiloach algorithm using
SpMSpV and a few other GraphBLAS operations

1

4

16

64

256

1024

4 16 64 256
Ti

m
e

(s
)

Number of KNL nodes (68 cores per node)

V=3M E=360M CC=160K

LACC Parconnect

Eukarya Proteins

2.3x
Eukarya

Impact: More than 2x faster connected component identification
across different scales. Orders of magnitude faster at large
concurrencies, enabling continued scaling of HipMCL by removing
this potential Amdahl’s bottleneck.

4096 16384 65536 262144
Number of Cores

4

16

64

256

1024

4096

16384

Ti
m

e
(s

ec
)

Metaclust50 (LACC)
iso_m100 (LACC)
Metaclust50 (ParConnect)
iso_m100 (ParConnect)

A. Azad, and A. Buluc, LACC: A Linear-Algebraic Algorithm for Finding Connected Components in Distributed Memory. IPDPS, 2019

[Extra] Some more kernels

Sparse Matrix – Multi Vector Multiplication (SpMM) on the GPU

Carl Yang, Aydin Buluç, and John D Owens. Design principles for sparse matrix multiplication on the GPU.
In Euro-Par, 2018. Distinguished Paper and Best Artifact Awards

(a) Sparse matrix A (b) Dense matrix B
1.T0 broadcasts 0 to T1, T2, ..., T7
2.T0, T1, T2, ..., T7 do coalesced memory access for row 0

• Thinking about TLP and ILP is the right way
to think about sparse matrix mulTplicaTon

• Isolate memory reads from compute from
memory writes, because this allows ILP to
materialize

Sparse Matrix – Multi Vector Multiplication (SpMM) on the GPU

Carl Yang, Aydin Buluç, and John D Owens. Design principles for sparse matrix multiplication on the GPU.
In Euro-Par, 2018. Distinguished Paper and Best Artifact Awards

4

A

B

C
m

k

n

k

m

n

Block.x 0

Block.x 1

Block.x 2

3 2

Block.y 1Block.y 0

Block.x
m
4

.

.

.

Dat as et

0

20

40

60

80

100

120

140

160

P
er

fo
rm

an
ce

(G
Fl

op
s)

cuSPARSE c s r m m
cuSPARSE c s r m m 2

MAGMA SELL-P
P r opos ed r ow-s plit

A new data access paPern

The paper also proposes a merge-based algorithm for sparser inputs

A work-efficient parallel algorithm for
sparse matrix-sparse vector multiplication (SpMSpV)

• Goal: A scalable SpMSpV algorithm without doing more work on higher concurrency
• Application: Breadth-first search, graph matching, support vector machines, etc.
• Algorithmic innovation:

§ Attains work-efficiency by arranging necessary columns of the matrix into buckets
where each bucket is processed by a single thread

§ Avoids synchronization by row-wise partitioning of the matrix on the fly
• Performance:

– First ever work-efficient algorithm for SpMSpV that attains up to 15x speedup on a 24-
core Intel Ivy Bridge processor and up to 49x speedup on a 64-core KNL processor

– Up to an order of magnitude faster than its competitors, especially for sparser vector1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

X-axis: Number of cores
(Intel Ivy Bridge)

Ti
m

e
(m

ill
ise

co
nd

s)

A.Azad, A. Buluç. A work-efficient parallel sparse matrix-sparse vector
multiplication algorithm. IPDPS’17

