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Graphs in the language of matrices

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient
• Three possible levels of parallelism:  searches, vertices, edges
• Highly-parallel implementation for Betweenness Centrality*

*: A measure of influence in graphs, based on shortest paths

BAT

à

AT � B
6

1 2

3

4 7 5



1 52 3 4 6
1

5

2
3
4

6

5

6

3

1 2

4

A1

A3
A2

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0

1 1
1 1

0 0 1

A1

A2 A3

x x =

Coarsening via sparse matrix-matrix products

2

1
2 1

Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing: 
Implementation and experiments. SIAM Journal of Scientific Computing (SISC), 2012.



The GraphBLAS effort

• The GraphBLAS Forum: http://graphblas.org
• Graphs: Architectures, Programming, and Learning  (GrAPL @IPDPS): 
http://hpc.pnl.gov/grapl/

Abstract-- It is our view that the state of the art in constructing a large collection of 
graph algorithms in terms of linear algebraic operations is mature enough to 
support the emergence of a standard set of primitive building blocks. This paper is 
a position paper defining the problem and announcing our intention to launch an 
open effort to define this standard.

http://graphblas.org
http://hpc.pnl.gov/grapl/


GraphBLAS Status: C API 1.2 released and in use
• Implementations of the GraphBLAS C specification:  
– SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html
– IBM https://github.com/IBM/ibmgraphblas
– Test suite for validating an implementation of the C-spec from SEI/CMU 

… to be released “soon”

• Systems using the GraphBLAS
– RedisGraph v1.0 preview release:

o RedisGraph is a graph database architecture implemented as a Redis
Module, using GraphBLAS sparse matrices for internal data representation 
and linear algebra for query execution.

o https://redislabs.com/blog/release-redisgraph-v1-0-preview/
– Lincoln Labs GraphProcessor designed around the GraphBLAS.

• C++ bindings to the GraphBLAS
– GBTL from SEI/CMU: https://github.com/cmu-sei/gbtl
– GraphBLAST for GPUs: http://github.com/gunrock/graphblast
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http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/IBM/ibmgraphblas
https://redislabs.com/blog/release-redisgraph-v1-0-preview/
https://github.com/cmu-sei/gbtl
http://github.com/gunrock/graphblast


GraphBLAST preliminary performance
[contact me for preprint]
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Shown applications (more implemented)
• Breadth-first-search (BFS)
• Single-source shortest-path (SSSP)
• PageRank (PR)
• Triangle counting (TC)

Design principles:
1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations



GraphBLAS C API 
• A binding of the GraphBLAS math to the C programming language.

• Requires C99 extended with function polymorphism based on static-types 
and number-of-parameters.
– All modern C compilers in common use today support these extensions

• Basic include file with function prototypes, types, and constants
– #include <GraphBLAS.h>

• Includes a few types and opaque objects (e.g. matrices and vectors) to give 
implementations maximum flexibility

7

GrB_Index à An integer type used to set dimensions and index into arrays
GrB_Matrix à A 2D sparse array, row indices, column indices and values
GrB_Vector à A 1D sparse Array

–… plus additional opaque objects we’ll describe later (descriptors, 
semirings, binary operators, and unary operators)



GraphBLAS C API: Basic definitions 

• Opaque object: An object manipulated strictly through the GraphBLAS API 
whose implementation is not defined by the GraphBLAS specification.

• Transparent object: an object whose structure is fully exposed to the 
programmer.  E.g.: an array of tuples <i, j, value>

• Method: Any C function that manipulates a GraphBLAS opaque object.

• Domain: the set of available values used for the elements of matrices, the 
elements of vectors, and when defining operators. 
– Examples are GrB_UINT64, GrB_INT32, GrB_BOOL, GrB_FP32

• Operation: a method that corresponds to an operation defined in the 
GraphBLAS math spec. http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

– Examples: matrix multiply, matrix vector multiply, reduction, apply
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http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf


Design principles of the GraphBLAS C API

9

• Object-oriented
– All objects are opaque, represented by handles
– Only GraphBLAS methods can manipulate those objects

• Separation of data (matrices and vectors) and operations
– Only explicitly defined elements of a matrix or vector have values
– The “structural zeros” are undefined
– Any matrix/vector can be used with any semiring of compatible domain
– Semantics are defined so that the “zero” value does not matter (most of the 

time)
• Blocking and nonblocking modes
– Blocking: each method completes before returning
– Nonblocking: methods may return early (must verify correctness of call)
– Facilitated by opaqueness of objects

• Procedural specification
– Semantics of each method is defined through process to compute output
– Any implementation that produces the same output is conforming



GraphBLAS C API Spec (h1p://graphblas.org)

• Goal: A crucial piece of the GraphBLAS effort is to translate the mathemaBcal 
specificaBon to an actual ApplicaBon Programming Interface (API) that 
i. is faithful to the mathemaBcs as much as possible, and

ii. enables efficient implementaBons on modern hardware. 

• Impact: All graph and machine learning algorithms that can be expressed in the 
language of linear algebra

• Innova.on: FuncBon signatures (e.g. mxm, vxm, assign, extract), parallelism constructs 
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a 
hierarchy of algebras (funcBons, monoids, and semiring)

A.Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.2.0

GrB_info GrB_mxm(GrB_Matrix *C,      // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor          desc]);

C(¬M) ⊕= AT ⊕.⊗ BT

http://graphblas.org/


Examples of semirings in graph algorithms

Real field: (R, +, x) Classical numerical linear algebra

Boolean algebra:  ({0 1}, |, &) Graph connectivity

Tropical semiring: (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes to 
form quotient graph

(edge/vertex attributes, vertex data 
aggregation, edge data processing)

Schema for user-specified 
computation at vertices and edges

(R, max, +) Graph matching &network alignment

(R, min, times) Maximal independent set

• Shortened semiring notation: (Set, Add, Multiply). Both identities omitted. 
• Add: Traverses edges, Multiply: Combines edges/paths at a vertex
• Neither add nor multiply needs to have an inverse.  
• Both add and multiply are associative, multiply distributes over add
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BFS in GraphBLAS with Masks



Push-pull ≡ column-row matvec!

Pull Push

Yang, C., Buluc, A. and Owens, J.D.,  Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18



Masks make “pull” implementable
in GraphBLAS

Row-based matvec w/ mask Column-based matvec w/ mask

• Pull is better for sufficiently sparse masks; push otherwise
• Claim: “direction optimization” would have been discovered 

automatically by the GraphBLAS runtime if we designed the 
interface back half a decade ago.
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Execution modes
• A GraphBLAS program defines a DAG of operations.
• Objects are defined by the sequence of GraphBLAS method calls, but the 

value of the object is not assured until a GraphBLAS method queries its 
state.

• This gives an implementation flexibility to optimize the execution (fusing 
methods, replacing method sequences by more efficient ones, etc.)

21

GrB_op1(A);
GrB_op2(B);
GrB_op3(C,A,B);

GrB_op1(A); GrB_op2(B);

GrB_op3(C,A,B);

• An execution of a GraphBLAS program defines a context for the library.
• The execution runs in one of two modes:
– Blocking mode … executes methods in program order with each method completing 

before the next is called
– Non-Blocking mode … methods launched in order. Complete in any order consistent 

with the DAG.  Objects do not exit in fully defined state until queried. 

• Most implementations only support Blocking mode.  
SuiteSparse:GraphBLAS uses nonblocking for assign and setElement



Opportunities in non-blocking mode
• Suppose you are solving a linear system on the Kronecker product graph
• Actually happens when you are computing similarity between two graphs
• Using “graph kernels” enable machine learning on graph structures data, 

such as proteins and other molecules.

• The Kronecker product itself has huge memory footprint and lots of 
redundancy (NK+ML dimension but NKML apparent values)

22

N x M K x L

N*K x M*L 



Opportunities in non-blocking mode
• The only way to write this in GraphBLAS or any other library we know of:

• What we would rather call:

• But that would result in API bloat and would lead us to a rabbit hole.

• There are many other examples: 
– KFAC (optimization method for deep learning), 
– Triple matrix product (graph contraction and AMG restriction),
– Triangle counting (who needs the list of triangles when all we need is the count)

• Solution: A JIT that performs automatic operator fusion

23

GrB_kronecker(C, …, A, B, …); // C=AÄB
GrB_mxv(y, …, C, x, …); // y=C x

GrB_kronxv(y, …, A, B, x …); // y= (AÄB) x



Status: GraphBLAS C API Specification v 1.3

New operations and methods
• Kronecker product (matrices)
• Apply w/ binary op. and scalar
• Edge (element) removal
• Resizing matrices/vectors

New built-in operators, 
descriptors, and other things
• Structure-only masks
• Bitwise binary ops for integers
• GrB_LXNOR boolean binary op
• GrB_ANY binary op/monoid
• Built-in descriptors
• Built-in monoids and semirings

24

Specification clarifications
• Language regarding “implied zero”
• Disclaimers against over-specification
• Relaxing reduction to scalar 

specification
• Clarifying distributive requirements
• Improving language about completions
• Removing language about annihilators
• Clarifying init() and finalize() errors
• Clarify aliasing requirements of user-

defined operators
• Define value of all enums

New and updated examples
• …but more in LAGraph
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[Extra] Some applications



Markov Cluster Algorithm (MCL)

27

Itera&on 1 Iteration 2 Iteration 3Initial network

Widely popular and successful algorithm for discovering 
clusters in protein interaction and protein similarity networks

At each iteration:
Step 1 (Expansion): Squaring the matrix while 

pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM), 
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise



A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– Smaller b: less parallelism, memory efficient (b=1 is equivalent 

to sparse matrix-sparse vector mulAplicaAon used in MCL)
– Larger b: more parallelism, memory intensive 



A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– HipMCL selects b dynamically as permitted by the available 

memory 
– The algorithm works in h=N/b phases where N is the number of 

columns (vertices in the network) in the matrix



HipMCL: High-performance MCL

• MCL process is both computationally expensive and memory 
hungry, limiting the sizes of networks that can be clustered

• HipMCL overcomes such limitation via sparse parallel algorithms. 
• Up to 1000X times faster than original MCL with same accuracy. 

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel 
implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018
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New shared-memory SpGEMM kernels

• Compression ratio (CR): 

flops/nnz(C)

• Combinatorial BLAS and

HipMCL uses heap

• Stable performance but 

significant gap in high CR

• HipMCL inputs have high 

CR

Yusuke Nagasaka, Satoshi Matsuoka, 

Ariful Azad, and Aydin Buluc. High-

performance sparse matrix-matrix products 

on intel KNL and multicore architectures. In 

ICPPW, 2018.

• We will integrate hash 

algorithms to CombBLAS

and HipMCL



° bhsparse [1]

• Hybrid method for result matrix pre-allocation

- 3 strategies (heap-based, 

• Parallel insert operations via fast merging

• Heuristic-based load balancing (bins)

° rmerge2 [2]

• Iterative row-merging

• Aggregate duplicate column indices via warp shuffles (merge ! = 32 rows)

• Requires no shared memory but many registers

• Grouping into cases for load balancing

[1] Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix 
multiplication for irregular data." In Parallel and Distributed Processing Symposium, 2014 IEEE 
28th International, pp. 370-381. IEEE, 2014.

[2] Gremse, Felix, Kerstin Küpper, and Uwe Naumann. "Memory-Efficient Sparse Matrix-Matrix 
Multiplication by Row Merging on Many-Core Architectures." SIAM Journal on Scientific 
Computing 40, no. 4 (2018): C429-C449.

[3] Nagasaka, Yusuke, Akira Nukada, and Satoshi Matsuoka. "High-Performance and Memory-
Saving Sparse General Matrix-Matrix Multiplication for NVIDIA Pascal GPU." In 2017 46th 
International Conference on Parallel Processing (ICPP), pp. 101-110. IEEE, 2017.

• nsparse [3]
• Linear probing shared-memory hash table
• Row grouping based on number of nonzero 

elements or intermediate products (load 
balancing)

• Warp shuffle and shared memory for 
accumulations

• Concurrent kernel execution via streams

• Performance might differ depending on
• Compression rate
• Matrix structure 
• GPU microarchitecture

SpGEMM on GPUs: tested libraries

If these authors implemented 
the standard GrB_mxm, things 
would be much more portable. 
But we are still doing great 
compared to 5+ years ago 
when the SpGEMM primitive 
wasn’t popular.

• bhsparse [1]
– Hybrid method for result matrix pre-allocation

• 3 strategies (heap-based, 

– Parallel insert operations via fast merging
– Heuristic-based load balancing (bins)

• rmerge2 [2]
– Iterative row-merging
– Aggregate duplicate column indices via warp 

shuffles (merge ! = 32 rows)
– Requires no shared memory but many registers
– Grouping into cases for load balancing

[1] Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix 
multiplication for irregular data." In Parallel and Distributed Processing Symposium, 2014 IEEE 
28th International, pp. 370-381. IEEE, 2014.

[2] Gremse, Felix, Kerstin Küpper, and Uwe Naumann. "Memory-Efficient Sparse Matrix-Matrix 
Multiplication by Row Merging on Many-Core Architectures." SIAM Journal on Scientific 
Computing 40, no. 4 (2018): C429-C449.

[3] Nagasaka, Yusuke, Akira Nukada, and Satoshi Matsuoka. "High-Performance and Memory-
Saving Sparse General Matrix-Matrix Multiplication for NVIDIA Pascal GPU." In 2017 46th 
International Conference on Parallel Processing (ICPP), pp. 101-110. IEEE, 2017.

• nsparse [3]
• Linear probing shared-memory hash table
• Row grouping based on number of nonzero 

elements or intermediate products (load 
balancing)

• Warp shuffle and shared memory for 
accumulations

• Concurrent kernel execution via streams

• Performance might differ depending on
• Compression rate
• Matrix structure 
• GPU microarchitecture

SpGEMM on GPUs: tested libraries

If these authors implemented the 
standard GrB_mxm, things would 
be much more portable. But we 
are still doing great compared to 
5+ years ago when the SpGEMM
primitive wasn’t popular.



LACC: Parallel Connected Components

Parallel connected components for cluster identification (after 
MCL iterations converge): Awerbuch-Shiloach algorithm using 
SpMSpV and a few other GraphBLAS operations
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[Extra] Some more kernels



Sparse Matrix – Multi Vector Multiplication (SpMM) on the GPU 

Carl Yang, Aydin Buluç, and John D Owens. Design principles for sparse matrix multiplication on the GPU. 
In Euro-Par, 2018. Distinguished Paper and Best Artifact Awards

(a) Sparse matrix A (b) Dense matrix B
1.T0 broadcasts 0 to T1, T2, ..., T7
2.T0, T1, T2, ..., T7 do coalesced memory access for row 0

• Thinking about TLP and ILP is the right way 
to think about sparse matrix mulTplicaTon

• Isolate memory reads from compute from 
memory writes, because this  allows ILP to
materialize



Sparse Matrix – Multi Vector Multiplication (SpMM) on the GPU 

Carl Yang, Aydin Buluç, and John D Owens. Design principles for sparse matrix multiplication on the GPU. 
In Euro-Par, 2018. Distinguished Paper and Best Artifact Awards
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A work-efficient parallel algorithm for 
sparse matrix-sparse vector multiplication (SpMSpV) 

• Goal: A scalable SpMSpV algorithm without doing more work on higher concurrency
• Application: Breadth-first search, graph matching, support vector machines, etc. 
• Algorithmic innovation:

§ Attains work-efficiency by arranging necessary columns of the matrix into buckets 
where each bucket is processed by a single thread

§ Avoids synchronization by row-wise partitioning of the matrix on the fly
• Performance: 

– First ever work-efficient algorithm for SpMSpV that attains up to 15x speedup on a 24-
core Intel Ivy Bridge processor and up to 49x speedup on a 64-core KNL processor

– Up to an order of magnitude faster than its competitors, especially for sparser vector1 2 4 8 16 32
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