
Is Acyclic Directed Graph Partitioning Effective
for Locality-Aware Scheduling?

M. Yusuf Özkaya1, Anne Benoit1,2, Ümit V. Çatalyürek1

1School of Computational Science and Engineering,
Georgia Institute of Technology, GA, USA

2LIP, ENS Lyon, France

14th Scheduling for Large Scale Systems Workshop
June 26-28, 2019 – Bordeaux, France

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
1 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Introduction

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
2 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Outline

1 Motivation

2 Acyclic DAG Partitioning

3 Model

4 Algorithms

5 Experimental Evaluation

6 Conclusion

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
3 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Outline

1 Motivation

2 Acyclic DAG Partitioning

3 Model

4 Algorithms

5 Experimental Evaluation

6 Conclusion

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 4 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Computational vs Data Move Complexity
Computational vs. Data Movement Complexity

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1]; Untiled version

Tiled Version
Comp. complexity: (N-1)2 Ops

◆  Data movement cost different for
two versions

◆  Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much
further improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent
versions of a computation?
Current performance tools and
methodologies do not address this

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 5 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Computational vs Data Move Complexity

Both have Comp. Complexity
(N − 1)2 OPs.

Data movement cost different for
two versions
Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much further
improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent versions
of a #computation?

Current performance tools and
methodologies do not address this

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 6 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Computational vs Data Move Complexity

Both have Comp. Complexity
(N − 1)2 OPs.

Data movement cost different for
two versions
Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much further
improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent versions
of a #computation?

Current performance tools and
methodologies do not address this

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 6 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Computational vs Data Move Complexity

Both have Comp. Complexity
(N − 1)2 OPs.

Data movement cost different for
two versions
Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much further
improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent versions
of a #computation?

Current performance tools and
methodologies do not address this

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 6 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Computational vs Data Move Complexity

Both have Comp. Complexity
(N − 1)2 OPs.

Data movement cost different for
two versions
Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much further
improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent versions
of a #computation?

Current performance tools and
methodologies do not address this

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 6 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Modeling Data Move Complexity: DAGComputational vs. Data Movement Complexity

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1]; Untiled version

Tiled Version
Comp. complexity: (N-1)2 Ops

◆  Data movement cost different for
two versions

◆  Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much
further improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent
versions of a computation?
Current performance tools and
methodologies do not address this

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1];

Modeling Data Movement Complexity: CDAG
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

C
D

A
G

 fo
r

N
=6

◆  CDAG abstraction:
§  Vertex = operation, edges = data dep.

◆  2-level memory hierarchy with S fast
mem locs. & infinite slow mem. locs.
§  To compute a vertex, predecessor

vertices must hold values in fast mem.
§  Limited fast memory => computed values

may need to be temporarily stored in slow
memory and reloaded

◆  Inherent data movement complexity
of CDAG: Minimal #loads+#stores
among all possible valid schedules

DAG abstraction: Vertex = operation, edges =
data dep.

2-level memory hierarchy with S fast mem locs.
& infinite slow mem. locs.

To compute a vertex, predecessor must
hold values in fast mem.
Limited fast memory ⇒ computed values
may need to be temporarily stored in slow
memory and reloaded

Data movement complexity of DAG: Minimal
#loads+#stores among all possible valid
schedules.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 7 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Modeling Data Move Complexity: DAGComputational vs. Data Movement Complexity

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1]; Untiled version

Tiled Version
Comp. complexity: (N-1)2 Ops

◆  Data movement cost different for
two versions

◆  Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much
further improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent
versions of a computation?
Current performance tools and
methodologies do not address this

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1];

Modeling Data Movement Complexity: CDAG
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

C
D

A
G

 fo
r

N
=6

◆  CDAG abstraction:
§  Vertex = operation, edges = data dep.

◆  2-level memory hierarchy with S fast
mem locs. & infinite slow mem. locs.
§  To compute a vertex, predecessor

vertices must hold values in fast mem.
§  Limited fast memory => computed values

may need to be temporarily stored in slow
memory and reloaded

◆  Inherent data movement complexity
of CDAG: Minimal #loads+#stores
among all possible valid schedules

DAG abstraction: Vertex = operation, edges =
data dep.
2-level memory hierarchy with S fast mem locs.
& infinite slow mem. locs.

To compute a vertex, predecessor must
hold values in fast mem.
Limited fast memory ⇒ computed values
may need to be temporarily stored in slow
memory and reloaded

Data movement complexity of DAG: Minimal
#loads+#stores among all possible valid
schedules.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 7 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Modeling Data Move Complexity: DAGComputational vs. Data Movement Complexity

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1]; Untiled version

Tiled Version
Comp. complexity: (N-1)2 Ops

◆  Data movement cost different for
two versions

◆  Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much
further improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent
versions of a computation?
Current performance tools and
methodologies do not address this

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1];

Modeling Data Movement Complexity: CDAG
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

C
D

A
G

 fo
r

N
=6

◆  CDAG abstraction:
§  Vertex = operation, edges = data dep.

◆  2-level memory hierarchy with S fast
mem locs. & infinite slow mem. locs.
§  To compute a vertex, predecessor

vertices must hold values in fast mem.
§  Limited fast memory => computed values

may need to be temporarily stored in slow
memory and reloaded

◆  Inherent data movement complexity
of CDAG: Minimal #loads+#stores
among all possible valid schedules

DAG abstraction: Vertex = operation, edges =
data dep.
2-level memory hierarchy with S fast mem locs.
& infinite slow mem. locs.

To compute a vertex, predecessor must
hold values in fast mem.
Limited fast memory ⇒ computed values
may need to be temporarily stored in slow
memory and reloaded

Data movement complexity of DAG: Minimal
#loads+#stores among all possible valid
schedules.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 7 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Modeling Data Move Complexity: DAGComputational vs. Data Movement Complexity

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1]; Untiled version

Tiled Version
Comp. complexity: (N-1)2 Ops

◆  Data movement cost different for
two versions

◆  Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled version?
How can we know when much
further improvement is not possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent
versions of a computation?
Current performance tools and
methodologies do not address this

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1];

Modeling Data Movement Complexity: CDAG
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

C
D

A
G

 fo
r

N
=6

◆  CDAG abstraction:
§  Vertex = operation, edges = data dep.

◆  2-level memory hierarchy with S fast
mem locs. & infinite slow mem. locs.
§  To compute a vertex, predecessor

vertices must hold values in fast mem.
§  Limited fast memory => computed values

may need to be temporarily stored in slow
memory and reloaded

◆  Inherent data movement complexity
of CDAG: Minimal #loads+#stores
among all possible valid schedules

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1];

Modeling Data Movement Complexity: CDAG
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

C
D

A
G

 fo
r

N
=6

Minimum possible data movement cost?

 No known effective solution to problem

Develop upper bounds on min-cost

Develop lower bounds on min-cost

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 8 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Data Movement Upper Bounds

Perform acyclic partitioning of the DAG

Assign each node in a single acyclic part

Acyclic partitioning of a DAG ≈ Tiling
the iteration space

Each part is acyclic

Can be executed atomically
No cyclic data dependence among
parts

Topologically sorted order of the acyclic
parts ⇒ a valid execution order

Hammer = Acyclic DAG Partitioner.

Data	Movement	Upper	Bounds	
•  Perform	convex	par44oning	of	

the	CDAG		
•  Assign	each	node	in	a	single	

convex	component	
•  Convex	par##oning	of	a	CDAG	≈	

Tiling	the	itera#on	space	
•  Each	component	is	convex	

–  Can	be	executed	atomically	
–  No	cyclic	data	dependence	among	

components	
•  Topologically	sorted	order	of	the	

convex	components	
	 	=>	a	valid	execu#on	order	

•  To	Do:	Develop	scalable	
distributed	convex	par##oning	
algorithm	for	CDAGs	

		
	

	

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Motivation 9 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Outline

1 Motivation

2 Acyclic DAG Partitioning

3 Model

4 Algorithms

5 Experimental Evaluation

6 Conclusion

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Acyclic DAG Partitioning 10 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Acycling DAG Partitioning

(a) A toy graph (b) A partition ignoring the
directions; it is cyclic.

(c) An acyclic parti-
tioning.

A Multilevel Acyclic DAG Partitioning

Recursive bisection.

Multilevel: coarsening, initial partitioning, refinement: all acyclic.

[SISC’19]: Herrmann, Özkaya, Uçar, Kaya, Ç, “Multilevel Algorithms for Acyclic Partitioning of Directed Acyclic Graphs”, SIAM
Journal on Scientific Computing,to appear.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Acyclic DAG Partitioning 11 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Objectives and Constraints

Objectives

Minimize the edge cut between components

Minimize the total volume of communication between components
(edge cut counting edges coming from a same node only once)

There should exist a traversal of the graph such that alive data fit
into the cache at any moment

Constraints

Upper bound on the weights of the part

Upper bound on the weight of each part plus the sum of weights of
the boundary vertices that are sources of the part’s incoming edges

There should exist a traversal of the graph such that alive data fit
into the cache at any moment

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Acyclic DAG Partitioning 12 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Outline

1 Motivation

2 Acyclic DAG Partitioning

3 Model

4 Algorithms

5 Experimental Evaluation

6 Conclusion

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 13 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Problem

Model

Directed acyclic task graph: G = (V ,E)
wi : is vertex weight – ci ,j : communication cost

For vi ∈ V ,

predecessors: predi = {vj | (vj , vi) ∈ E}
succesors: succi = {vj | (vi , vj) ∈ E}
cannot start until all predecessors have completed,
size of (scratch) memory: wi

produces a data of size outi that will be communicated to all of its
successors, i.e., ci,j = outi .

Fast memory is C , and slow memory is large enough.

In order to compute task vi ∈ V , the processor must access
ini + wi + outi fast memory locations.

Because of the limited fast memory, some computed values may need
to be temporarily stored in slow memory and reloaded later.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 14 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example

For simplicity in the presentation: wi = 0 and outi = 1. Hence, total
input size of task vi is ini = |predi |.

v1

v2 v3 v4

v5 v6

v7

Sample execution order

vertex v1 v2 v3 v4

data size 1

2 3 4
if C = 3, one will need to evict a data from the cache, hence resulting in a
cache miss.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 15 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example

For simplicity in the presentation: wi = 0 and outi = 1. Hence, total
input size of task vi is ini = |predi |.

v1

v2 v3 v4

v5 v6

v7

Sample execution order

vertex v1 v2 v3 v4

data size 1 2

3 4
if C = 3, one will need to evict a data from the cache, hence resulting in a
cache miss.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 15 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example

For simplicity in the presentation: wi = 0 and outi = 1. Hence, total
input size of task vi is ini = |predi |.

v1

v2 v3 v4

v5 v6

v7

Sample execution order

vertex v1 v2 v3 v4

data size 1 2 3

4
if C = 3, one will need to evict a data from the cache, hence resulting in a
cache miss.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 15 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example

For simplicity in the presentation: wi = 0 and outi = 1. Hence, total
input size of task vi is ini = |predi |.

v1

v2 v3 v4

v5 v6

v7

Sample execution order

vertex v1 v2 v3 v4

data size 1 2 3 4

if C = 3, one will need to evict a data from the cache, hence resulting in a
cache miss.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 15 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example

For simplicity in the presentation: wi = 0 and outi = 1. Hence, total
input size of task vi is ini = |predi |.

v1

v2 v3 v4

v5 v6

v7

Sample execution order

vertex v1 v2 v3 v4

data size 1 2 3 4
if C = 3, one will need to evict a data from the cache, hence resulting in a
cache miss.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 15 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example: livesize

livesize: live set size is defined as the minimum cache size required for the
execution so that there are no cache misses.

v1

v2 v3 v4

v5 v6

v7

Traversals

traversal v1 → v2 → v3 → v4 → v5 → v6 → v7, liveset = 4.

For another traversal, v1 → v7 → v2 → v5 → v6 → v3 → v4, livesize
= 3.
This is the minimum cache size to execute this DAG, since task v6

requires 3 cache locations to be executed.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 16 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example: livesize

livesize: live set size is defined as the minimum cache size required for the
execution so that there are no cache misses.

v1

v2 v3 v4

v5 v6

v7

Traversals

traversal v1 → v2 → v3 → v4 → v5 → v6 → v7, liveset = 4.

For another traversal, v1 → v7 → v2 → v5 → v6 → v3 → v4, livesize
= 3.
This is the minimum cache size to execute this DAG, since task v6

requires 3 cache locations to be executed.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 16 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example: livesize

livesize: live set size is defined as the minimum cache size required for the
execution so that there are no cache misses.

v1

v2 v3 v4

v5 v6

v7

Traversals

traversal v1 → v2 → v3 → v4 → v5 → v6 → v7, liveset = 4.

For another traversal, v1 → v7 → v2 → v5 → v6 → v3 → v4, livesize
= 3.

This is the minimum cache size to execute this DAG, since task v6

requires 3 cache locations to be executed.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 16 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

An example: livesize

livesize: live set size is defined as the minimum cache size required for the
execution so that there are no cache misses.

v1

v2 v3 v4

v5 v6

v7

Traversals

traversal v1 → v2 → v3 → v4 → v5 → v6 → v7, liveset = 4.

For another traversal, v1 → v7 → v2 → v5 → v6 → v3 → v4, livesize
= 3.
This is the minimum cache size to execute this DAG, since task v6

requires 3 cache locations to be executed.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Model 16 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Outline

1 Motivation

2 Acyclic DAG Partitioning

3 Model

4 Algorithms

5 Experimental Evaluation

6 Conclusion

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Algorithms 17 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Parts, Cuts, Traversals

Parts

Consider an acyclic k-way partition P = {V1, . . . ,Vk} of the DAG
G = (V ,E):

the set of vertices V is divided into k disjoint subsets, or parts

There is a path between Vi and Vj (Vi Vj) if and only if there is a
path in G between a vertex vi ∈ Vi and a vertex vj ∈ Vj .

Cuts

cut edge: if its endpoints are in different parts.

Let Ecut(P) be the set of cut edges for this partition.

The edge cut of a partition:
EdgeCut(P) =

∑
(vi ,vj)∈Ecut(P) ci ,j .

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Algorithms 18 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Traversals, Livesize

Traversal

Let Vi ⊆ V be a part of the DAG (1 ≤ i ≤ k).
τ(Vi) : a traversal of the part Vi is an ordered list of the vertices that
respect precedence constraints within the part:
if there is an edge (v , v ′) ∈ E , then v must appear before v ′ in the
traversal.

Livesize

Given a part Vi and a traversal of this part τ(Vi)
L(τ(Vi)): livesize of the traversal is the maximum memory usage
required to execute the whole part.

We define L(τ(Vi)) as the livesize computed such that inputs and outputs
(of part Vi) are evicted from the cache if they are no longer required inside
the part.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Algorithms 19 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Cache Eviction, Optimization Problem

Cache Eviction

During execution, if the livesize is greater than the cache size C some
data must be transferred from the cache back into slow memory.

The data that will be evicted may affect the number of cache misses.

Given a traversal, the optimal strategy consists in evicting the data
whose next use will occur farthest in the future during execution
[Belady IBM SysJ’66].

MinCacheMiss

Given a DAG G , a cache of size C , find a topological order of G that
minimizes the number of cache misses when using the OPT strategy.

Finding the optimal traversal to minimize the livesize is an
NP-complete problem [Sethi STOC’73], even though it is polynomial
on trees [Jacquelin et al. IPDPS’11].

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Algorithms 20 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

DAG-Assisted Locality-Aware Scheduling

Instead of looking for a global traversal of the whole graph, we propose to
partition the DAG in an acyclic way.
The key is, then, to have all the parts executable without cache misses,
hence the only cache misses can be incurred by data on the cut between
parts.
Therefore, we aim at minimizing the edge cut of the partition.

Traversals Used

Natural Ordering (Nat) treats the node id’s as the priority of the
node, where the lower id has a higher priority, hence the traversal is
v1 → v2 → · · · → vn, except if node id’s do not follow precedence
constraints (schedule ready task of highest priority first).

DFS Traversal Ordering (Dfs) follows a depth-first traversal strategy
among the ready tasks.

BFS Traversal Ordering (Bfs) follows a breadth-first traversal strategy
among the ready tasks.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Algorithms 21 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Recursive bisection with target Liveset Size

GRAPH
liveset = 974

P1
liveset = 670

P0
liveset = 523

P01
liveset = 256

P00
liveset = 402

P10
liveset = 453

P11
liveset = 302

P100

ls=197

P101

ls=297

P01 + P100
liveset = 388

P101

ls=297

P01
liveset = 256

P11
liveset = 302

P11
liveset = 302

P000

ls=222

P001

ls=184

P000

ls=222

P001

ls=184

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Algorithms 22 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Outline

1 Motivation

2 Acyclic DAG Partitioning

3 Model

4 Algorithms

5 Experimental Evaluation

6 Conclusion

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Experimental Evaluation 23 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Graph Instances

Instances from the SuiteSparse Matrix Collection (formerly know as UFL):

Graph |V | |E | maxin.deg maxout.deg LNat LDfs LBfs
144 144,649 1,074,393 21 22 74,689 31,293 29,333
598a 110,971 741,934 18 22 81,801 41,304 26,250
caidaRouterLev. 192,244 609,066 321 1040 56,197 34,007 35,935
coAuthorsCites. 227,320 814,134 95 1367 34,587 26,308 27,415
delaunay-n17 131,072 393,176 12 14 32,752 39,839 52,882
email-EuAll 265,214 305,539 7,630 478 196,072 177,720 205,826
fe-ocean 143,437 409,593 4 4 8,322 7,099 3,716
ford2 100,196 222,246 29 27 26,153 4,468 25,001
halfb 224,617 6,081,602 89 119 66,973 25,371 38,743
luxembourg-osm 114,599 119,666 4 5 4,686 2,768 6,544
rgg-n-2-17-s0 131,072 728,753 18 19 759 1,484 1,544
usroads 129,164 165,435 4 5 297 8,024 9,789
vsp-finan512. 139,752 552,020 119 666 25,830 24,714 38,647
vsp-mod2-pgp2. 101,364 389,368 949 1726 41,191 36,902 36,672
wave 156,317 1,059,331 41 38 13,988 22,546 19,875

Note that when reporting the cache miss counts, we do not include
compulsory (cold, first reference) misses, the misses that occur at the
first reference to a memory block, as these misses cannot be avoided.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Experimental Evaluation 24 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Performance of the three baseline traversal algorithms

512 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Cache Size

10 3

10 2

10 1

100

No
rm

al
ize

d
Av

er
ag

e
Ca

ch
e

M
iss

Nat
Dfs
Bfs

In smaller cache sizes, Nat is best.
As the cache size increases, after 3072, Dfs traversal is best.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Experimental Evaluation 25 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Relative Cache Miss

Relative cache misses (geomean of average of 50 runs) for each graph
separately (left cache size 512; right cache size 10240).

14
4

59
8a

ca
id

aR
ou

te

co
Au

th
or

sC

de
la

un
ay

_n

em
ai

l-E
uA

l

fe
_o

ce
an

fo
rd

2

ha
lfb

lu
xe

m
bo

ur
g

rg
g_

n_
2_

17

us
ro

ad
s

vs
p_

fin
an

5

vs
p_

m
od

2_
p

wa
ve

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e

Ca
ch

e
M

iss

dagP-NAT
dagP-DFS
dagP-BFS

14
4

59
8a

ca
id

aR
ou

te

co
Au

th
or

sC

de
la

un
ay

_n

em
ai

l-E
uA

l

fe
_o

ce
an

fo
rd

2

ha
lfb

lu
xe

m
bo

ur
g

rg
g_

n_
2_

17

us
ro

ad
s

vs
p_

fin
an

5

vs
p_

m
od

2_
p

wa
ve

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e

Ca
ch

e
M

iss

dagP-NAT
dagP-DFS
dagP-BFS

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Experimental Evaluation 26 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Effect of Lm and C on Cache Miss Improvement

Relative cache misses of dagP-* with the given partition livesize for Nat
(left), Dfs (right), and Bfs (bottom) traversals.

512 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Cache Size

10 2

10 1

100

Re
la

tiv
e

Ca
ch

e
M

iss

2C
1C
0.5C
0.25C
0.125C

512 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Cache Size

10 2

10 1

100

Re
la

tiv
e

Ca
ch

e
M

iss

2C
1C
0.5C
0.25C
0.125C

512 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Cache Size

10 2

10 1

100

Re
la

tiv
e

Ca
ch

e
M

iss

2C
1C
0.5C
0.25C
0.125C

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Experimental Evaluation 27 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Performance Profiles and Runtime

(Left) Performance profile comparing baselines and heuristics with
Lm = 0.5× C .
(Right) Average runtime of all graphs for dagP-dfs partitioning.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p Nat
dagP-NAT
Dfs
dagP-DFS
Bfs
dagP-BFS

512 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Cache Size

0

5

10

15

20

25

30

Ru
nt

im
e

(s
)

2C
1C
0.5C
0.25C
0.125C

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Experimental Evaluation 28 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Outline

1 Motivation

2 Acyclic DAG Partitioning

3 Model

4 Algorithms

5 Experimental Evaluation

6 Conclusion

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Conclusion 29 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Conclusion and Future work

Conclusion

A DAG-partitioning assisted approach for improving data locality.

Experimental evaluation shows significant reduction in the number of
cache misses.

Future Work

Study the effect of a customized DAG-partitioner specifically for
cache optimization purposes

Design traversal algorithms to optimize cache misses.

Use a better fitting directed hypergraph representation for the
model.

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Conclusion 30 / 31

http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

Thanks

Thanks

To P. Sadayappan for sharing his motivation slides.

More information

contact : umit@gatech.edu
visit: http://cc.gatech.edu/~umit or http://tda.gatech.edu

TDAlab
June 27th, 2019,
umit@gatech.edu

Is acyclic DAG partitioning effective for locality-aware scheduling?
Conclusion 31 / 31

http://cc.gatech.edu/~umit
http://tda.gatech.edu
http://tda.gatech.edu
umit@gatech.edu
http://cse.gatech.edu

	Introduction
	Motivation
	Acyclic DAG Partitioning
	Model
	Algorithms
	Experimental Evaluation
	Conclusion

