ADJOINT COMPUTATION AND BACKPROPAGATION

Julien Herrmann
Inria Center of Bordeaux, France

14th Scheduling for Large Scale Systems Workshop

[WHO’S WHO]

Automatic Differentiation Machine Learning (II)

7
ﬁ Paul Hovland (Argonne)
! Alena Shilova (Inria)
E Scheduling
Navjot Kukreja (Imperial College) ' .‘

(

YV /
——a Guillaume Pallez (Inria)

i Krishna Narayanan (Argonne) %
Machine Learning (I) IelB" Olivier Beaumont (Inria)

‘ L S
. Alexis Joly (Inria) Julien Herrmann (Inria)

(=75

[ICE—SHEET MODEL (I)]

“In climate modelling, Ice-sheet models use numerical methods to simulate the
evolution, dynamics and thermodynamics of ice sheets.” (wikipedia)

Model f-\lguﬂthm (single timestep)

1. Evaluate driving stress 7 = pghVs
2. Solve for velocities
DO =1, max_iter
i. Evaluate nonlinear viscosity v from
iterate u,
ii. Construct stress matrix Afv}
iii. Solve linear system A u;,, =14
iv. (Exit if converged)
ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

& Credit: Danijel Goldberg |

(=18

[ICE-SHEET MODEL (I)]

“In climate modelling, Ice-sheet models use numerical methods to simulate the
evolution, dynamics and thermodynamics of ice sheets.” (wikipedia)

Model Algon'thm (single timestep)

1. Evaluate driving stress 7 = pghVs
2. Solve for velocities
DO =1, max_iter
i. Evaluate nonlinear viscosity v from
iterate u,
ii. Construct stress matrix Afv}
iii. Solve linear system A u,,, =1y
iv. (Exit if converged)
ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

& Credit: Danijel Goldberg |

Simpler Version:
proc Model Algorithm (uo, y)
begin
Do stuff;
for i =0 ton do
U1 = fi(ui);
Do stuff;
end
/* F(uo) = fno fa—10...0 fo(uo) */
Compute VF(uo)y ;

end

(=18

[ICE—SHEET MODEL (II)]

A quick reminder about the gradient:

F(ug) = fno fn—10...0 f1o fo(uo)

VF(uo)y = J fo(uo)" - V(fno fi)(u1) -y

JfO(uO)T : Jfl(ul)T Teet an—l(un—l)T : an(un)T Y

JfT = Transpose Jacobian matrix of f;

filui) = fi (fi—10...0 fo(uo))-

D«

Fi(x;) = w1
Fi(zi, i) = 4

[ADJOINT COMPUTATION]

1<l
1 <1

(=7

[ADJOINT COMPUTATION]

Fl(wz) = Ti41 1<l
Fi(2i,Zip1) = T; 1<

Zy—1

ﬁ,- xl.- 2 xl;2,|Fl_2

Fi1 |

(=7

[ADJOINT COMPUTATION]

Fl(xl) = Ti+1 1<
Fi(ziy®iy1) =2; 1<l

— Ifl
o Fo . F;

Xz
s, 1B pan L=l Gl

(=7

[ADJOINT COMPUTATION]

Fi(x;) = xipr i<
Fi(z;,Ziq) =2; i<l

Zo z1 z2 T2 Ti—1
] R e
Y’_‘ x1 T2 -1 x;

cn i = B ol T
_ T
%o Fo 7 F 7 Fy T3 . -1 7

(=7

[MODEL OF EXECUTION]

=
|

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

Do

[MODEL OF EXECUTION]

=
|

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

» Memory to store output of

computations (x; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Example of execution
Strategy Time Space

Do

[MODEL OF EXECUTION]

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Do

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Do

» Memory to store output of

computations (x; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Do

[MODEL OF EXECUTION]

/]

Peak Mem
;

Example of execution
» Memory to store output of Strategy Time Space
computations (x; or Z;). Initial state:
contains xg.

e

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$

Do

[MODEL OF EXECUTION]

Peak Mem
Fo Fl
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

.< Peak Mem
Fo Fl
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[R]

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$

Store “none”

Do

[MODEL OF EXECUTION]

Peak Mem
Fo Fl
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem
Fo Fl
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem
Fo Fl
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem
Fo Fl
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

.< Peak Mem
Fy F 3
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$

Store “none”

Do

[MODEL OF EXECUTION]

Peak Mem
Fy F 3
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem
Fy F 3
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains xg. Store “none”

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

Do

» Memory to store output of

computations (x; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$
Store “none” $$$ $

Do

[MODEL OF EXECUTION]

.< - Peak Mem
1

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

.< Peak Mem
;

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

[R]

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$
Store “none” $$$ $
Checkpoint $$ $$

Do

[MODEL OF EXECUTION]

Peak Mem

"5

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem

4

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

Peak Mem

m< Fy
;

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

» Memory to store output of

computations (x; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$
Store “none” $$$ $
Checkpoint $$ $$

Do

[MODEL OF EXECUTION]

F Peak Mem
;

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

» Memory to store output of

computations (x; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$
Store “none” $$$ $
Checkpoint $$ $$

Do

» Memory to store output of

computations (x; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$
Store “none” $$$ $
Checkpoint $$ $$

Do

[MODEL OF EXECUTION]

.< Peak Mem
;

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

K Peak Mem
Fy Fy 4
Example of execution
» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ (333
contains zg. Store “none” $$$ $
» Cost to write: w,, = 0, Checkpoint $$ $$

» Cost to read: 7, = 0.

Do

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space

Store all $ $$$
Store “none” $$$ $
Checkpoint $$ $$

Do

[MODEL OF EXECUTION]

Peak Mem

I<-<-< [2]

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

[MODEL OF EXECUTION]

. Peak Mem
—E— ;

Example of execution

» Memory to store output of Strategy Time Space
computations (z; or Z;). Initial state: Store all $ $$3
contains zg. Store “none” $$$ $

» Cost to write: w,, =0, Checkpoint 33 33

» Cost to read: 7, = 0.

Do

[PROBLEM FORMULATION]

We want to minimize the makespan of:

Initial state:

AC graph: | size l

Steps: | ug,up
Memory: | ¢pm, Wy =7m =0, | Min = {20}
Storage k: | ck, Wy, Tk, Sini = 0

I S L

Do

[EXISTING WORK]

Question: How to organize the reverse execution of intermediate steps?
What do we store, what do we recompute?

» Store all: memory expensive
» Recompute all: compute expensive

» Intermediate status?

(=38

[BOUNDED MEMORY]

Griewand and Walther, 2000: REVOLVE(!, ¢,,), optimal algorithm with ¢, memory
slots.

Figure 1.3: Example of Parallel Reversal Using 3 Checkpoints

Source: Andrea Walther’s PhD thesis, 1999

3 ° o

Do

[STORAGE HIERARCHY]

Aupy, Herrmann, Hovland, Robert, 2015: Optimal algorithm for two level of

storage: cheap bounded memory and costly unbounded disks.
Aupy, Herrmann, 2019: Library of optimal schedules for any number of storage level.

(https://gitlab.inria.fr/adjoint-computation)

—— REVOLVE

—— PER-REV-REVOLVE

Rel. Pert. compared to HRevolve

S

Fig. 5. Relative performance of the heuristics compared to the optimal solution on hierarchical platforms for

large graph sizes.

(@) arch_1.txt

9

1000 2000 3000 4000 5000
Size of AC gragh

o

60 7

1000

2000

300 4000 5000 6000 7
Size of AC graph

(b) arch_2.xt

Do

https://gitlab.inria.fr/adjoint-computation

[RELATION TO TA? (I)]

GoogleNet graph:

Source : Internet :s

[RELATION TO TA? (I)]

GoogleNet graph:

Convolution
Pooling

Concat/Normalize

Seurce,: Ipternet :s, lg

[RELATION To AI? (II)

Derivatives in machine learning

“Backprop” and gradient descent are at the core of all recent advances

Computer vision

ILSVRC top-5 error on ImageNet

2o om wz WO W e A

Top-5 error rate for ImageNet (NVIDIA devblog)

Faster R-CNN (Ren et al. 2015)

NVIDIA DRIVE PX 2 segmentation

Speech recognition & synthesis Machine translation
gﬂ STy . e
T E—— ! =
ri — i

Word error rates (Huang et al., 2014)

QLAamrirce Ravdin Revinonmd boecknrom *

Google Neural Machine Translation System (GNMT)

Avuutomatar dafferentaontann 9 manrhaime Tearndna 9017 °

[WHAT DIRECTIONS FOR AI?]

While the core of the algorithms remain similar, the problematics are different:

vvyyy

v

Shallower graphs (O(100 — 1000) levels).
Cost functions (time/memory) are not necessarily uniform.
Graphs with more structure than chains.

Multi-Learners/Hyperparameter tuning (independent graphs executed
simultaneously), shared memory?

Etc.

[DIR. FOR Al: GRAPH STRUCTURE II]

Classification loss

Labels

Image features

[
[SmiariyToss]

Fig. 2. Schematic o the wsed a

Source: Suris et al., Cross-Modal Embeddings

for Video and Audio Retrieval, 2018

Figure I: Siamese Neural Network Architecture

Source: Rao et al., A Deep Stamese Neural

Network (...), 2016

[DIR. FOR Al: GRAPH STRUCTURE II]

Pitchfork graph (aka join graphs):
————1—

Theorem (Aupy, Beaumont, Herrmann, Shilova, 2019)

Given a bounded memory and a pitchfork with a bounded number of “teeth”, we can find in
polynomial time the solution that backpropagates it in minimal time.

Three phase algorithm:
1 Forward phase
2 Turn

3 Backward phase

— 00—

—O0—0—0—

[A GRASP OF THE PROOF? (I)]

Three phase algorithm:
1 Forward phase
2 Turn

3 Backward phase

e eaey

[A GRASP OF THE PROOF? (I)]

» Traverse all branches. Write some
intermediate data

Three phase algorithm:

1 Forward phase
2 Turn
3 Backward phase

[A GRASP OF THE PROOF? (I)]

» Traverse all branches. Write some
intermediate data

» Backpropagate the handle of the pitchfork

Three phase algorithm:
1 Forward phase
2 Turn

3 Backward phase

o 3
S

v

[A GRASP OF THE PROOF? (I)]

Traverse all branches. Write some
intermediate data

Backpropagate the handle of the pitchfork

Iteratively, read some checkpointed data
from one of the branches, backpropagate a
subset of the graph (can write additional
intermediate data)

[A GRASP OF THE PROOF? (H)]

It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

[A GRASP OF THE PROOF? (II)]

It relies on key properties of the
backward phase:

> Stability of execution Lemma (Stability 1)
» Checkpoint persistence

If F; is “backpropagated”, then there are
which give us a multi-phase approach. no Fj fori < j.

|
|
]

E
“\

It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

. r
Lt

[A GRASP OF THE PROOF? (II)]

Lemma (Checkpoint persistence)

If x; is stored, until F; is
“backpropagated”, there are no F; for
j <t.

|
%

><

[A GRASP OF THE PROOF? (II)]

It relies on key properties of the
backward phase:

> Stability of execution Lemma (Stability 2)
» Checkpoint persistence

If x; is read, then there are no F; on

which give us a multi-phase approach. other branches until it is backpropagated.
e
n)
.4.|:|_>

[A GRASP OF THE PROOF? (II)]

In this case, for a given forward phase,
It relies on key properties of the we get a multi-phase backward phase:
backward phase:

o ROB Fi
——0——0—+——F—F—@—+—F0@—F—
» Stability of execution D D D D f Forward phase

» Checkpoint persistence
which give us a multi-phase approach. » Where do we schedule the
checkpoints in the forward phase?

» In which order do we execute the
subsegment on each branch?

—+— Siamese
4 ~— CM
—— Single chain
"C
3
w3
=
T
Iy
= 2
1
0.0 0.2 0.4 0.6 0.8 1.0
C/CSr'{mr

Makespan/Span”

[MAKESPAN OVERHEAD]

—=— Siamese
4 ~— CM
—— Single chain
3
2
1
0.0 0.2 0.4 0.6 0.8 1.0
C/CSmm

[IS IT WORTH IT?]

[IS IT WORTH IT?]

» From a scheduling perspective: Yes! (new fun problems)

[IS IT WORTH IT?]

» From a scheduling perspective: Yes! (new fun problems)

» From an adjoint perspective: Yes!
With a memory of size O(M):
» Store All can execute a graph of size O(M) in time O(M);
» Revolve can execute a graph of size O(eM) in time O(MeM)!
» H-Revolve inproves performance by a factor of magnitude.

[IS IT WORTH IT?]

» From a scheduling perspective: Yes! (new fun problems)

» From an adjoint perspective: Yes!
With a memory of size O(M):
» Store All can execute a graph of size O(M) in time O(M);
» Revolve can execute a graph of size O(eM) in time O(MeM)!
» H-Revolve inproves performance by a factor of magnitude.

» Machine Learning perspective: deeper networks!

[IS IT WORTH IT?]

» From a scheduling perspective: Yes! (new fun problems)

» From an adjoint perspective: Yes!
With a memory of size O(M):
» Store All can execute a graph of size O(M) in time O(M);
» Revolve can execute a graph of size O(eM) in time O(MeM)!
» H-Revolve inproves performance by a factor of magnitude.

» Machine Learning perspective: deeper networks!

Thanks

	Introduction
	Rel. work

	Going further

