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[ICE—SHEET MODEL (I)]

“In climate modelling, Ice-sheet models use numerical methods to simulate the
evolution, dynamics and thermodynamics of ice sheets.” (wikipedia)

Model f-\lguﬂthm (single timestep)

1. Evaluate driving stress 7 = pghVs
2. Solve for velocities
DO =1, max_iter
i. Evaluate nonlinear viscosity v from
iterate u,
ii. Construct stress matrix Afv}
iii. Solve linear system A u;,, =14
iv. (Exit if converged)
ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

& Credit: Danijel Goldberg |
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iterate u,
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ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

& Credit: Danijel Goldberg |

Simpler Version:
proc Model Algorithm (uo, y)
begin
Do stuff;
for i =0 ton do
U1 = fi(ui);
Do stuff;
end
/* F(uo) = fno fa—10...0 fo(uo) */
Compute VF(uo)y ;

end
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[ICE—SHEET MODEL (II)]

A quick reminder about the gradient:

F(ug) = fno fn—10...0 f1o fo(uo)

VF(uo)y = J fo(uo)" - V(fno fi)(u1) -y

JfO(uO)T : Jfl(ul)T Teet an—l(un—l)T : an(un)T Y

JfT = Transpose Jacobian matrix of f;

filui) = fi (fi—10...0 fo(uo))-

D«



Fi(x;) = w1
Fi(zi, i) = 4

[ADJOINT COMPUTATION]

1<l
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[ADJOINT COMPUTATION]

Fl(wz) = Ti41 1<l
Fi(2i,Zip1) = T; 1<
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[ADJOINT COMPUTATION]
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[ADJOINT COMPUTATION]
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[MODEL OF EXECUTION]
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contains xg.
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[PROBLEM FORMULATION]

We want to minimize the makespan of:

Initial state:

AC graph: | size l

Steps: | ug,up
Memory: | ¢pm, Wy =7m =0, | Min = {20}
Storage k: | ck, Wy, Tk, Sini = 0

I S L

Do



[EXISTING WORK]

Question: How to organize the reverse execution of intermediate steps?
What do we store, what do we recompute?

» Store all: memory expensive
» Recompute all: compute expensive

» Intermediate status?

(=38



[BOUNDED MEMORY]

Griewand and Walther, 2000: REVOLVE(!, ¢,, ), optimal algorithm with ¢, memory
slots.

Figure 1.3: Example of Parallel Reversal Using 3 Checkpoints

Source: Andrea Walther’s PhD thesis, 1999

3 ° o

Do



[STORAGE HIERARCHY]

Aupy, Herrmann, Hovland, Robert, 2015: Optimal algorithm for two level of

storage: cheap bounded memory and costly unbounded disks.
Aupy, Herrmann, 2019: Library of optimal schedules for any number of storage level.

(https://gitlab.inria.fr/adjoint-computation)

—— REVOLVE

—— PER-REV-REVOLVE

Rel. Pert. compared to HRevolve

S

Fig. 5. Relative performance of the heuristics compared to the optimal solution on hierarchical platforms for

large graph sizes.

(@) arch_1.txt
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(b) arch_2.xt

Do
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[RELATION TO TA? (I)]

GoogleNet graph:

Convolution
Pooling

Concat/Normalize

Seurce,: Ipternet :s, lg



[RELATION To AI? (II)

Derivatives in machine learning

“Backprop” and gradient descent are at the core of all recent advances

Computer vision

ILSVRC top-5 error on ImageNet

2o om wz WO W e A

Top-5 error rate for ImageNet (NVIDIA devblog)

Faster R-CNN (Ren et al. 2015)

NVIDIA DRIVE PX 2 segmentation

Speech recognition & synthesis Machine translation
gﬂ STy . e
T E—— ! =
ri — i

Word error rates (Huang et al., 2014)

QLAamrirce Ravdin  Revinonmd boecknrom *

Google Neural Machine Translation System (GNMT)

Avuutomatar dafferentaontann 9 manrhaime Tearndna 9017 °



[WHAT DIRECTIONS FOR AI?]

While the core of the algorithms remain similar, the problematics are different:

vvyyy

v

Shallower graphs (O(100 — 1000) levels).
Cost functions (time/memory) are not necessarily uniform.
Graphs with more structure than chains.

Multi-Learners/Hyperparameter tuning (independent graphs executed
simultaneously), shared memory?

Etc.



[DIR. FOR Al: GRAPH STRUCTURE II]

Classification loss

Labels

Image features

[
[ SmiariyToss ]

Fig. 2. Schematic o the wsed a

Source: Suris et al., Cross-Modal Embeddings

for Video and Audio Retrieval, 2018

Figure I: Siamese Neural Network Architecture

Source: Rao et al., A Deep Stamese Neural

Network (...), 2016



[DIR. FOR Al: GRAPH STRUCTURE II]

Pitchfork graph (aka join graphs):
————1—

Theorem (Aupy, Beaumont, Herrmann, Shilova, 2019)

Given a bounded memory and a pitchfork with a bounded number of “teeth”, we can find in
polynomial time the solution that backpropagates it in minimal time.



Three phase algorithm:
1 Forward phase
2 Turn

3 Backward phase
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Three phase algorithm:
1 Forward phase
2 Turn

3 Backward phase

o 3
S

v

[A GRASP OF THE PROOF? (I)]

Traverse all branches. Write some
intermediate data

Backpropagate the handle of the pitchfork

Iteratively, read some checkpointed data
from one of the branches, backpropagate a
subset of the graph (can write additional
intermediate data)
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It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

. r
Lt

[A GRASP OF THE PROOF? (II)]

Lemma (Checkpoint persistence)

If x; is stored, until F; is
“backpropagated”, there are no F; for
j <t.

|
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[A GRASP OF THE PROOF? (II)]

It relies on key properties of the
backward phase:

> Stability of execution Lemma (Stability 2)
» Checkpoint persistence

If x; is read, then there are no F; on

which give us a multi-phase approach. other branches until it is backpropagated.
e
n )
.4.|:|_>



[A GRASP OF THE PROOF? (II)]

In this case, for a given forward phase,
It relies on key properties of the we get a multi-phase backward phase:
backward phase:

o ROB Fi
——0——0—+——F—F—@—+—F0@—F—
» Stability of execution D D D D f Forward phase

» Checkpoint persistence
which give us a multi-phase approach. » Where do we schedule the
checkpoints in the forward phase?

» In which order do we execute the
subsegment on each branch?
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