ADJOINT COMPUTATION AND BACKPROPAGATION

Julien Herrmann Inria Center of Bordeaux, France

14th Scheduling for Large Scale Systems Workshop

Who's who

Automatic Differentiation

Paul Hovland (Argonne)

Navjot Kukreja (Imperial College)

Krishna Narayanan (Argonne)

Machine Learning (I)

Alexis Joly (Inria)

Machine Learning (II)

Alena Shilova (Inria)

Scheduling

Guillaume Pallez (Inria)

Olivier Beaumont (Inria)

Julien Herrmann (Inria)

ICE-SHEET MODEL (I)

"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

Model Algorithm (single timestep)

- 1. Evaluate driving stress $\tau_d = \rho g h \nabla s$
- Solve for velocities

DO i = 1, max_iter

- i. Evaluate nonlinear viscosity v_i from iterate u_i
- ii. Construct stress matrix A{v.}
- iii. Solve linear system $A u_{i+1} = \tau_d$
- iv. (Exit if converged)
- 3. Evolve thickness (continuity eqn)

Automatic differentiation (AD) tools generate code for adjoint of operations

ICE-SHEET MODEL (I)

"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

Model Algorithm (single timestep)

```
    Evaluate driving stress τ<sub>d</sub> = ρgh∇s
    Solve for velocities
        DO i = 1, max_iter
        i. Evaluate nonlinear viscosity v<sub>i</sub> from iterate u<sub>i</sub>
        ii. Construct stress matrix A{v<sub>i</sub>}
        iii. Solve linear system A u<sub>i+1</sub> = τ<sub>d</sub>
        iv. (Exit if converged)
        ENDDO

    Evolve thickness (continuity eqn)
        Automatic differentiation
        (AD) tools generate code
        for adjoint of operations
```

```
Simpler Version:

proc Model Algorithm(u_0, y)

begin

Do stuff;

for i = 0 to n do

u_{i+1} = f_i(u_i);
Do stuff;

end

/* F(u_0) = f_n \circ f_{n-1} \circ \ldots \circ f_0(u_0)

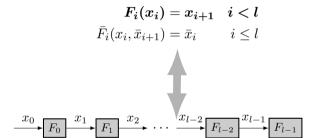
Compute \nabla F(u_0)y;

end
```

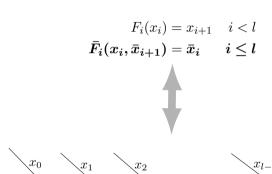
ICE-SHEET MODEL (II)

A quick reminder about the gradient:

$$F(u_0) = f_n \circ f_{n-1} \circ \ldots \circ f_1 \circ f_0(u_0)$$


$$\nabla F(u_0) \mathbf{y} = J f_0(u_0)^T \cdot \nabla (f_n \circ f_1)(u_1) \cdot \mathbf{y}$$
$$= J f_0(u_0)^T \cdot J f_1(u_1)^T \cdot \dots \cdot J f_{n-1}(u_{n-1})^T \cdot J f_n(u_n)^T \cdot \mathbf{y}$$

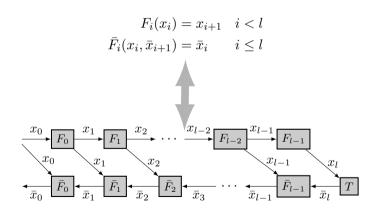
$$Jf^{T}$$
 = Transpose Jacobian matrix of f ;
 $u_{i+1} = f_{i}(u_{i}) = f_{i}(f_{i-1} \circ \ldots \circ f_{0}(u_{0}))$.

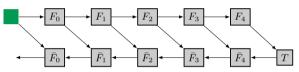

Adjoint computation

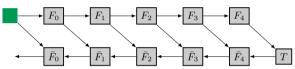
$$F_i(x_i) = x_{i+1} \quad i < l$$

$$\bar{F}_i(x_i, \bar{x}_{i+1}) = \bar{x}_i \quad i \le l$$

Adjoint computation

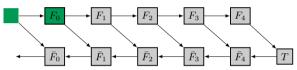



Adjoint computation


g O

ADJOINT COMPUTATION

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

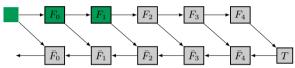

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution

Strategy Time

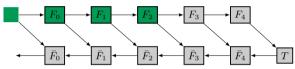

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution Strategy Time

Time Space

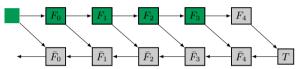

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution

Strategy Time

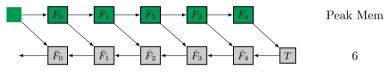

► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution Strategy

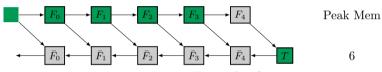
Time


► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution Strategy


Time

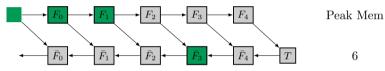
▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

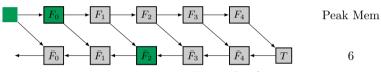
▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,


ightharpoonup Cost to read: $r_m = 0$.

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

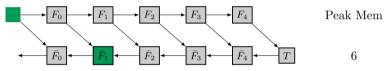

ightharpoonup Cost to read: $r_m = 0$.

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

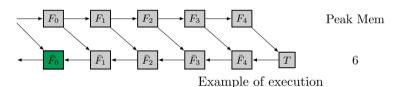
▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .


ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution Strategy Time Spa

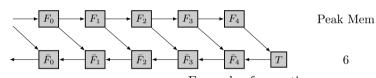
Space


G 0 0 0 0 0 0 0 0 0

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

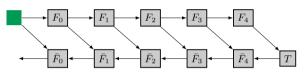


- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Time

Space

Strategy


▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

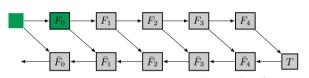
ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution
Strategy Time Space
Store all \$ \$\$\$

Peak Mem

► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

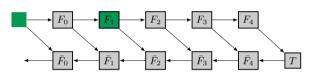

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution

Space Strategy Time Store all \$ \$\$\$

Store "none"

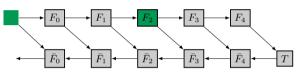


Peak Mem

- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution				
Strategy	Time	Space		
Store all	\$	\$\$\$		
Store "none"				

Peak Mem



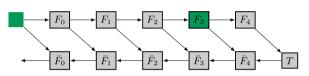
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution Time

Space Strategy Store all \$ \$\$\$ Store "none"

Peak Mem

▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .

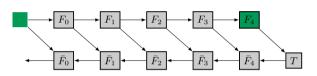

ightharpoonup Cost to write: $w_m = 0$,

ightharpoonup Cost to read: $r_m = 0$.

Example of execution

Strategy Time Space
Store all \$ \$\$\$
Store "none"

G • • • • • • • • • • •

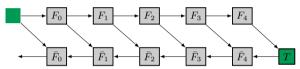


Peak Mem

- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution				
Strategy	Time	Space		
Store all	\$	\$\$\$		
Store "none"				

Peak Mem

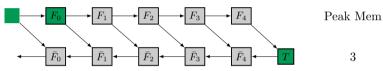


- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution Strategy Time

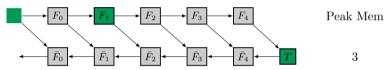
Space Store all \$ \$\$\$ Store "none"

Peak Mem

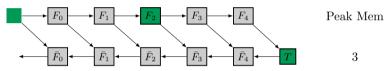


Example of execution

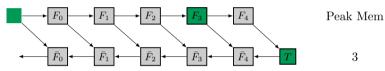
Strategy Time Space
Store all \$ \$\$\$
Store "none"


- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

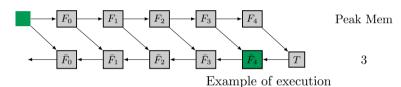
8


- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

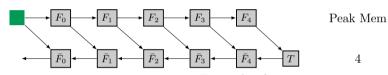
Example of execution
Strategy Time Space
Store all \$ \$\$\$
Store "none"


- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution			
Strategy	Time	Space	
Store all	\$	\$\$\$	
Store "none"			

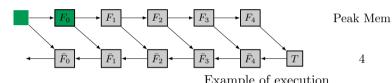

- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution
Strategy Time Space
Store all \$ \$\$\$
Store "none"

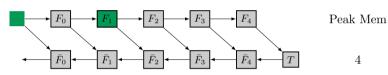

- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution
Strategy Time Space
Store all \$ \$\$\$
Store "none"

- ▶ Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

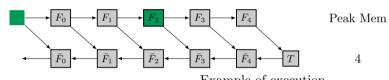

Strategy Time Space
Store all \$ \$\$\$
Store "none" \$\$\$

- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

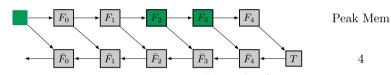

Example of execution

Example of execution				
Strategy	Time	Space		
Store all	\$	\$\$\$		
Store "none"	\$\$\$	\$		
Checkpoint	\$\$	\$\$		

- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

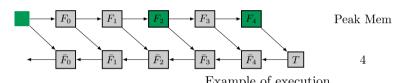

Literation of circos		
Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.


Example of execution				
Strategy	Time	Space		
Store all	\$	\$\$\$		
Store "none"	\$\$\$	\$		
Checkpoint	\$\$	\$\$		

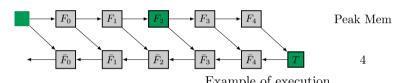
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of	execu	61011	
Stra	$_{ m tegy}$	Time	5


Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

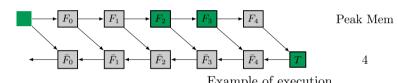
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution


Example of execu	Example of execution				
Strategy	Time	Space			
Store all	\$	\$\$\$			
Store "none"	\$\$\$	\$			
Checkpoint	\$\$	\$\$			

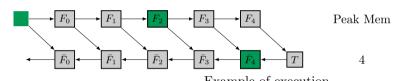
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

LACIL	ipic oi	CACCU	101011	
	Stra	$_{ m tegy}$	Time	Spa
	CI.	11	Ф	Φ.0


Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

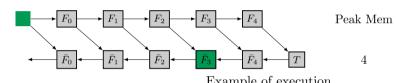
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

LACOIT	pic or	CACCU	101011	
	Strat	egy	Time	\mathbf{S}


arrows pro or orroco		
Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

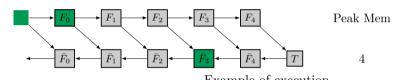
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

127200111	pro or c	21000	101011	
	Strate	egy	Time	\mathbf{S}


Directiple of circos		
Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

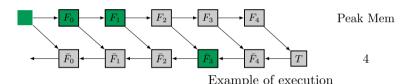
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of	execu	61011	
Stra	$_{ m tegy}$	Time	5


Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

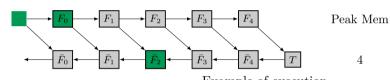
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

LACTI	pic or	CACCC	101011	
	Stra	$_{ m tegy}$	Time	S_{i}


co.rr.pro or orrood		
Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

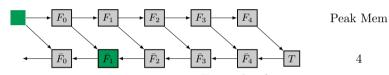
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of	execu	61011	
Stra	$_{ m tegy}$	Time	5


Literation of circos		
Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

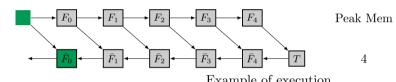
- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Strategy	Time	Space
Store all	- \$	\$8\$


Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example	ΟI	exect	шоп	
St	ra	tegv	Tim	e

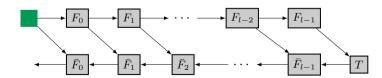

Example of execu	101011	
Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.

Example of execution

Example of execution			
Strategy	Time	Space	
Store all	\$	\$\$\$	
Store "none"	\$\$\$	\$	
Checkpoint	\$\$	\$\$	

- ► Memory to store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 .
 - ightharpoonup Cost to write: $w_m = 0$,
 - ightharpoonup Cost to read: $r_m = 0$.


 JIC 01	021000	101011	
Stra	$_{ m tegy}$	Time	Sp
CI.	11	Ф	Φ.

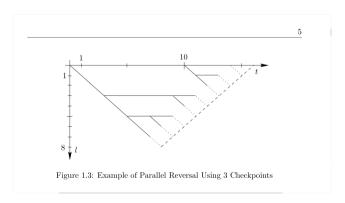
Strategy	Time	Space
Store all	\$	\$\$\$
Store "none"	\$\$\$	\$
Checkpoint	\$\$	\$\$

PROBLEM FORMULATION

We want to minimize the makespan of:

		Initial state:
AC graph:	size l	
Steps:	u_f, u_b	
Memory:	$c_m, w_m = r_m = 0,$	$\mathcal{M}_{\mathrm{ini}} = \{x_0\}$
~ .	$c_k, w_k, r_k,$	$S_{\mathrm{ini}} = \emptyset$

Existing work


Question: How to organize the reverse execution of intermediate steps? What do we store, what do we recompute?

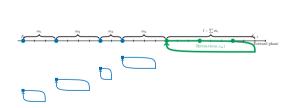
- ► Store all: memory expensive
- ► Recompute all: compute expensive
- ► Intermediate status?

G . . O

BOUNDED MEMORY

Griewand and Walther, 2000: Revolve (l, c_m) , optimal algorithm with c_m memory slots.

Source: Andrea Walther's PhD thesis, 1999


g . O

STORAGE HIERARCHY

Aupy, Herrmann, Hovland, Robert, 2015: Optimal algorithm for two level of storage: cheap bounded memory and costly unbounded disks.

Aupy, Herrmann, 2019: Library of optimal schedules for any number of storage level.

(https://gitlab.inria.fr/adjoint-computation)

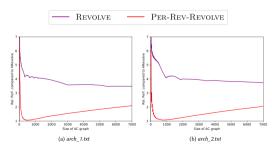
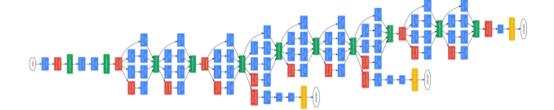
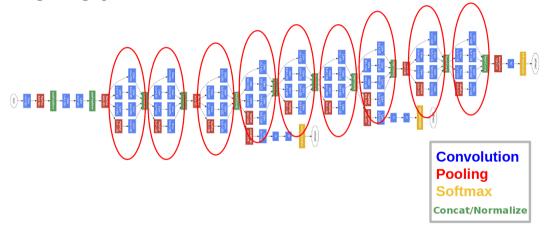



Fig. 5. Relative performance of the heuristics compared to the optimal solution on hierarchical platforms for large graph sizes.

8

RELATION TO IA? (I)

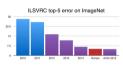
GoogleNet graph:



Source : Internet :s

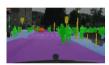
3

RELATION TO IA? (I)

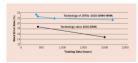

GoogleNet graph:

RELATION TO AI? (II)

Derivatives in machine learning


"Backprop" and gradient descent are at the core of all recent advances **Computer vision**

Top-5 error rate for ImageNet (NVIDIA devblog)


TO THE PARTY OF TH

Faster R-CNN (Ren et al. 2015)

NVIDIA DRIVE PX 2 segmentation

Speech recognition & synthesis

Word error rates (Huang et al., 2014)

Machine translation

4

Source: Baydin, Beyond backgrop: Automatic differentiation in machine learning, 2017.°

WHAT DIRECTIONS FOR AI?

While the core of the algorithms remain similar, the problematics are different:

- ► Shallower graphs (O(100 1000) levels).
- ► Cost functions (time/memory) are not necessarily uniform.
- ▶ Graphs with more structure than chains.
- ► Multi-Learners/Hyperparameter tuning (independent graphs executed simultaneously), shared memory?
- ► Etc.

DIR. FOR AI: GRAPH STRUCTURE II

Source: Surís et al., Cross-Modal Embeddings for Video and Audio Retrieval, 2018

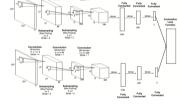
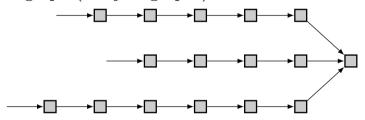


Figure 1: Siamese Neural Network Architecture


Source: Rao et al., A Deep Siamese Neural

Network (...), 2016

g · · · •

DIR. FOR AI: GRAPH STRUCTURE II

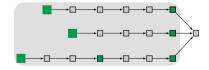
Pitchfork graph (aka join graphs):

Theorem (Aupy, Beaumont, Herrmann, Shilova, 2019)

Given a bounded memory and a pitchfork with a bounded number of "teeth", we can find in polynomial time the solution that backpropagates it in minimal time.

.

Three phase algorithm:


- 1 Forward phase
- 2 Turn
- 3 Backward phase

G • • 🖺

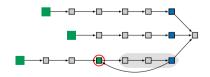
Three phase algorithm:

- Forward phase
- 2 Turn
- 3 Backward phase

► Traverse all branches. Write some intermediate data

g . . <u>A</u>

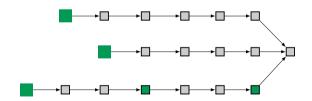
Three phase algorithm:


- 1 Forward phase
- 2 Turn
- 3 Backward phase

- ► Traverse all branches. Write some intermediate data
- ► Backpropagate the handle of the pitchfork

Three phase algorithm:

- 1 Forward phase
- 2 Turn
- 3 Backward phase

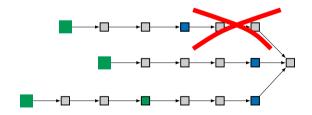


- ► Traverse all branches. Write some intermediate data
- ► Backpropagate the handle of the pitchfork
- ► Iteratively, read some checkpointed data from one of the branches, backpropagate a subset of the graph (can write additional intermediate data)

з · • 🛱

It relies on key properties of the **backward** phase:

- ► Stability of execution
- ► Checkpoint persistence which give us a multi-phase approach.

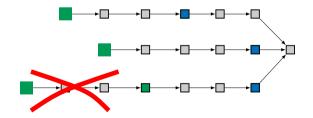

G • E

It relies on key properties of the **backward** phase:

- ► Stability of execution
- ► Checkpoint persistence which give us a multi-phase approach.

Lemma (Stability 1)

If F_i is "backpropagated", then there are no F_j for $i \leq j$.

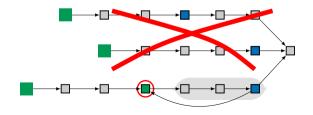

. . 6

It relies on key properties of the **backward** phase:

- ► Stability of execution
- ► Checkpoint persistence which give us a multi-phase approach.

Lemma (Checkpoint persistence)

If x_i is stored, until F_i is "backpropagated", there are no F_j for j < i.


• В

It relies on key properties of the **backward** phase:

- ► Stability of execution
- ► Checkpoint persistence which give us a multi-phase approach.

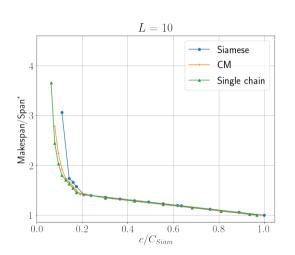
Lemma (Stability 2)

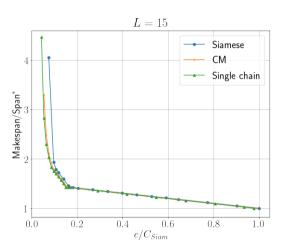
If x_i is read, then there are no F_j on other branches until it is backpropagated.

. . .

It relies on key properties of the **backward** phase:

- ► Stability of execution
- ► Checkpoint persistence which give us a multi-phase approach.


In this case, for a given forward phase, we get a multi-phase backward phase:



- ► Where do we schedule the checkpoints in the forward phase?
- ► In which order do we execute the subsegment on each branch?

3 ∘ 🖺

Makespan overhead

G

► From a scheduling perspective: Yes! (new fun problems)

- ► From a scheduling perspective: Yes! (new fun problems)
- From an adjoint perspective: Yes! With a memory of size O(M):
 - ▶ Store All can execute a graph of size O(M) in time O(M);
 - Revolve can execute a graph of size $O(e^M)$ in time $O(Me^M)!$
 - \blacktriangleright $\it H-Revolve$ in proves performance by a factor of magnitude.

- ► From a scheduling perspective: Yes! (new fun problems)
- From an adjoint perspective: Yes! With a memory of size O(M):
 - ▶ Store All can execute a graph of size O(M) in time O(M);
 - Revolve can execute a graph of size $O(e^M)$ in time $O(Me^M)!$
 - ightharpoonup H-Revolve in proves performance by a factor of magnitude.
- ► Machine Learning perspective: deeper networks!

- ► From a scheduling perspective: Yes! (new fun problems)
- From an adjoint perspective: Yes! With a memory of size O(M):
 - ▶ Store All can execute a graph of size O(M) in time O(M);
 - Revolve can execute a graph of size $O(e^M)$ in time $O(Me^M)!$
 - ► *H-Revolve* inproves performance by a factor of magnitude.
- ► Machine Learning perspective: deeper networks!

Thanks