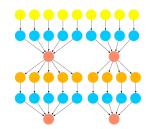
Efficient scheduling of DAGs under bounded memory

Loris Marchal Joint work with Bertrand Simon & Frédéric Vivien

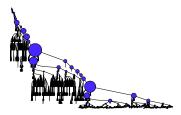
Scheduling for Large Scale Systems Workshop 2019 Bordeaux

Modeling scientific applications as task graphs

- Scientific applications divided into rather independent modules (tasks)
- Tasks linked through data dependencies
- Directed Acyclic Graph of tasks

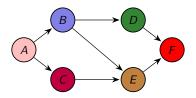


Multifrontal sparse matrix factorization over runtimes

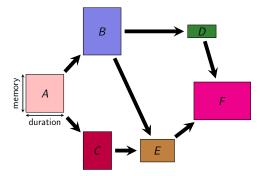


- Task graph: tree (with dependencies towards the root)
- Large temporary data
- Memory becomes a bottleneck
- Schedule trees with limited memory

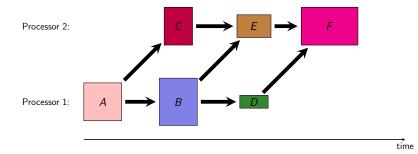
Consider a simple task graph



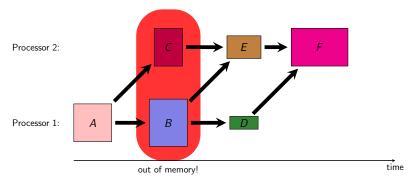
- Consider a simple task graph
- Tasks have durations and memory demands



- Consider a simple task graph
- Tasks have durations and memory demands

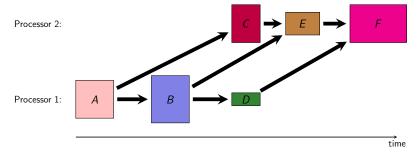


- Consider a simple task graph
- Tasks have durations and memory demands



Peak memory: maximum memory usage

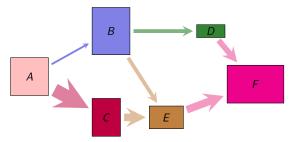
- Consider a simple task graph
- Tasks have durations and memory demands



- Peak memory: maximum memory usage
- Trade-off between peak memory and makespan

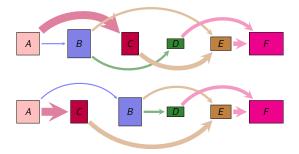
Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory



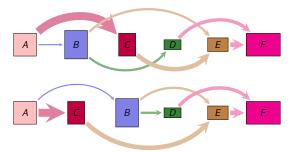
Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory



Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory

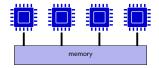


Known results on sequential memory-aware scheduling:

- Optimal algorithm for trees [Liu, 1897], SP-graphs [Kayaaslan et al., 2018]
- General graphs with unit size weights: pebble game [Sethi and Ullman, 1973], PSPACE complete [Gilbert et al., 1980]

Today's focus

- Schedule general graphs
- On a shared-memory platform



First option: design good static scheduler:

- NP-complete, non-approximable
- Cannot react to unpredicted changes in the platform or inaccuracies in task timings

Second option:

- Limit memory consumption of any dynamic scheduler Target: runtime systems
- Without impacting too much parallelism

Outline

Model and maximum parallel memory

Memory model Maximum parallel memory/maximal topological cut

Efficient scheduling with bounded memory

Problem definition Complexity Heuristics Simulation results

Conclusion

Outline

Model and maximum parallel memory

Memory model Maximum parallel memory/maximal topological cut

Efficient scheduling with bounded memory

Problem definition Complexity Heuristics Simulation results

Conclusion

Task graphs with:

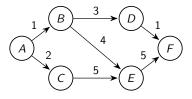
- ▶ Vertex weights (*w_i*): task (estimated) durations
- ▶ Edge weights (*m_{i,j}*): data sizes

Task graphs with:

- ▶ Vertex weights (*w_i*): task (estimated) durations
- ▶ Edge weights (*m_{i,j}*): data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

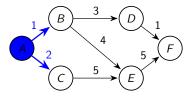


Task graphs with:

- ▶ Vertex weights (*w_i*): task (estimated) durations
- ▶ Edge weights (*m_{i,j}*): data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

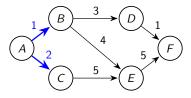


Task graphs with:

- ▶ Vertex weights (*w_i*): task (estimated) durations
- ▶ Edge weights (*m_{i,j}*): data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

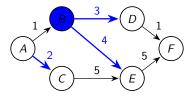


Task graphs with:

- ▶ Vertex weights (*w_i*): task (estimated) durations
- ▶ Edge weights (*m_{i,j}*): data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

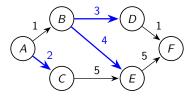


Task graphs with:

- ▶ Vertex weights (*w_i*): task (estimated) durations
- ▶ Edge weights (*m_{i,j}*): data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated



Task graphs with:

- Vertex weights (w_i): task (estimated) durations
- ▶ Edge weights (*m_{i,j}*): data sizes

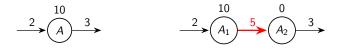
Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:

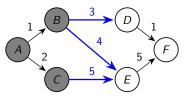
Inputs + outputs allocated during task: duplicate nodes



Computing the maximum memory peak

Topological cut: (S, T) with:

- S include the source node, T include the target node
- No edge from T to S
- Weight of the cut = weight of all edges from S to T



Any topological cut corresponds to a possible state when all node in S are completed or being processed.

Two equivalent questions (in our model):

- What is the maximum memory of any parallel execution?
- What is the topological cut with maximum weight?

Computing the maximum topological cut

Literature:

- Lots of studies of various cuts in non-directed graphs ([Diaz,2000] on Graph Layout Problems)
- Minimum cut is polynomial on both directed/non-directed graphs
- Maximum cut NP-complete on both directed/non-directed graphs ([Karp 1972] for non-directed, [Lampis 2011] for directed ones)
- Not much for topological cuts

Theorem.

Computing the maximum topological cut of a DAG can be done in polynomial time.

 Consider one classical LP formulation for finding a minimum cut:

$$\begin{split} \min \sum_{\substack{(i,j)\in E}} m_{i,j}d_{i,j} \\ \forall (i,j)\in E, \quad d_{i,j}\geq p_i-p_j \\ \forall (i,j)\in E, \quad d_{i,j}\geq 0 \\ p_s=1, \quad p_t=0 \end{split}$$

 Consider one classical LP formulation for finding a minimum cut:

$$\min \sum_{(i,j)\in E} m_{i,j}d_{i,j}$$
 $orall (i,j)\in E, \quad d_{i,j}\geq p_i-p_j$
 $orall (i,j)\in E, \quad d_{i,j}\geq 0$
 $p_s=1, \quad p_t=0$

• Integer solution \Leftrightarrow topological cut

 Consider one classical LP formulation for finding a minimum cut:

$$\max \sum_{(i,j)\in E} m_{i,j}d_{i,j}$$
$$\forall (i,j)\in E, \quad d_{i,j}=p_i-p_j$$
$$\forall (i,j)\in E, \quad d_{i,j}\geq 0$$
$$p_s=1, \quad p_t=0$$

- Integer solution \Leftrightarrow topological cut
- Then change the optimization direction (min \rightarrow max)

 Consider one classical LP formulation for finding a minimum cut:

$$\max \sum_{(i,j)\in E} m_{i,j}d_{i,j}$$
$$\forall (i,j)\in E, \quad d_{i,j}=p_i-p_j$$
$$\forall (i,j)\in E, \quad d_{i,j}\geq 0$$
$$p_s=1, \quad p_t=0$$

- Integer solution \Leftrightarrow topological cut
- Then change the optimization direction (min \rightarrow max)
- ► Draw *w* uniformly in]0,1[, define the cut such that $S_w = \{i \mid p_i > w\}, \quad T_w = \{i \mid p_i \le w\}$
- Expected cost of this cut = M^* (opt. rational solution)
- All cuts with random w have the same cost M*

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

- 1. Build a large flow F on the graph G
- 2. Consider G^{diff} with edge weights $F_{i,j} m_{i,j}$
- 3. Compute a maximum flow *maxdiff* in G^{diff}
- 4. F maxdiff is a minimum flow in G
- 5. Residual graph \rightarrow maximum topological cut

Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch1. Build a large flow F on the graph G2. Consider G^{diff} with edge weights $F_{i,j} - m_{i,j}$ 3. Compute a maximum flow maxdiff in
 G^{diff} 4. F - maxdiff is a minimum flow in G5. Residual graph \rightarrow maximum

Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$

topological cut

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch $F_{i,j}$ 1. Build a large flow F on the graph G2. Consider G^{diff} with edge weights $F_{i,j} - m_{i,j}$ 3. Compute a maximum flow maxdiff in G^{diff} 4. F - maxdiff is a minimum flow in G5. Residual graph \rightarrow maximum

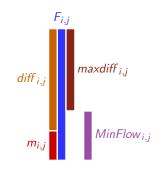
Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$

topological cut

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

- 1. Build a large flow F on the graph G
- 2. Consider G^{diff} with edge weights $F_{i,j} m_{i,j}$
- 3. Compute a maximum flow *maxdiff* in G^{diff}
- 4. F maxdiff is a minimum flow in G
- 5. Residual graph \rightarrow maximum topological cut

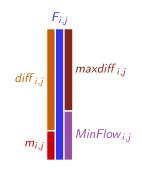


Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

- 1. Build a large flow F on the graph G
- 2. Consider G^{diff} with edge weights $F_{i,j} m_{i,j}$
- 3. Compute a maximum flow *maxdiff* in G^{diff}
- 4. F maxdiff is a minimum flow in G
- 5. Residual graph \rightarrow maximum topological cut



Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$

Predict the maximal memory of any dynamic scheduling \Leftrightarrow Compute the maximal topological cut

Two algorithms:

- Linear program + rounding
- Direct algorithm based on MaxFlow/MinCut

Outline

Model and maximum parallel memory

Memory model Maximum parallel memory/maximal topological cut

Efficient scheduling with bounded memory

Problem definition Complexity Heuristics Simulation results

Conclusion

Coping with limiting memory

Problem:

- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

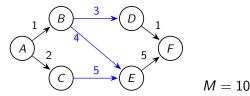
Coping with limiting memory

Problem:

- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:

- Add edges to guarantee that any parallel execution stays below M fictitious dependencies to reduce maximum memory
- Minimize the obtained critical path



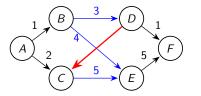
Coping with limiting memory

Problem:

- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:

- Add edges to guarantee that any parallel execution stays below M fictitious dependencies to reduce maximum memory
- Minimize the obtained critical path



M = 10

Definition (PartialSerialization).

Given a DAG G = (V, E) and a bound M, find a set of new edges E' such that $G' = (V, E \cup E')$ is a DAG, $MaxMem(G') \le M$ and CritPath(G') is minimized.

Theorem.

PartialSerialization is NP-hard in the stronge sense.

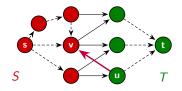
NB: stays NP-hard if we are given a sequential schedule σ of G which uses at most a memory M.

Heuristic solutions for PARTIALSERIALIZATION

Framework:

(inspired by [Sbîrlea et al. 2014])

- 1. Compute a max. top. cut (S, T)
- 2. If weight $\leq M$: succeeds
- Add edge (u, v) with u ∈ T, v ∈ S without creating cycles; or fail



4. Goto Step 1

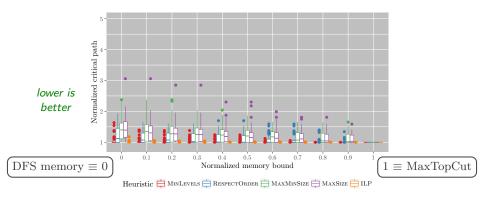
Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule, always succeeds

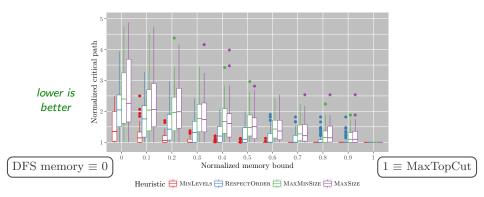
MaxSize targets nodes dealing with large data MaxMinSize variant of MaxSize

Simulations: dense random graphs (25, 50, 100 nodes)



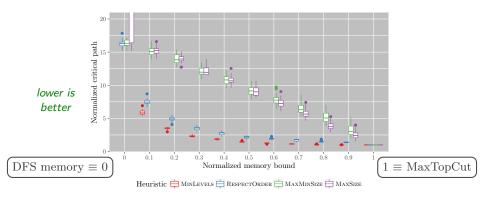
- ► x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS ≈ 1.3
- y: CP / original CP \rightarrow lower is better
- MinLevels performs best

Simulations: sparse random graphs (25, 50, 100 nodes)



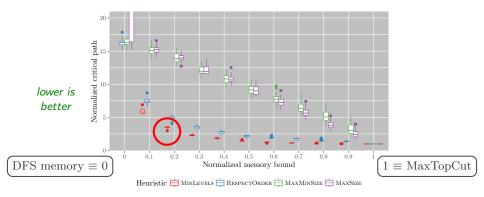
- ► x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS ≈ 2
- y: CP / original CP \rightarrow lower is better
- MinLevels performs best, but might fail

Simulations – Pegasus workflows (LIGO 100 nodes)



- ▶ Median ratio MaxTopCut / DFS ≈ 20
- MinLevels performs best, RespectOrder always succeeds

Simulations – Pegasus workflows (LIGO 100 nodes)



- ▶ Median ratio MaxTopCut / DFS ≈ 20
- MinLevels performs best, RespectOrder always succeeds
- Memory divided by 5 for CP multiplied by 3

Outline

Model and maximum parallel memory

Memory model Maximum parallel memory/maximal topological cut

Efficient scheduling with bounded memory

Problem definition Complexity Heuristics Simulation results

Conclusion

Conclusion

- Dynamic scheduling with bounded memory
 - Explicit algo. to compute maximum memory
- Adding fictitious dependencies to limit memory usage
 - Changing the graph to allow various scheduling strategies
 - Critical path as a performance metric
 - Several heuristics (+ ILP)

Perspectives:

- Reduce heuristic complexity to cope with large graphs
- Include knowledge on the dynamic scheduler
- Other performance metric?
- Approximations algorithms??