
An EPTAS for Scheduling Fork-Join Graphs with
Communication Delay

Klaus Jansen¹, Oliver Sinnen², Huijun (Tony) Wang²,

¹: Department of Computer Science
University of Kiel, Germany

²: Parallel and Reconfigurable Computing Lab
Department of Electrical, Computer and Software Engineering

University of Auckland, New Zealand

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 1 / 28

Overview

Problem domain
Scheduling task graphs (DAGs) with communication delays on
homogeneous processors – P|prec , cij |Cmax

No known constant approximation algorithm
No PTAS

Here today
EPTAS (Efficient Polynomial Time Approximation Scheme) for fork-join
graphs – P|fork − join, cij |Cmax

Polynomial 2-approximation algorithm [Aussois 2018]
Very important graph structure, realistic for many computations
Very hard to schedule optimally (maximum degree of freedom, but
order and allocation matters)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 2 / 28

Overview

Problem domain
Scheduling task graphs (DAGs) with communication delays on
homogeneous processors – P|prec , cij |Cmax

No known constant approximation algorithm
No PTAS

Here today
EPTAS (Efficient Polynomial Time Approximation Scheme) for fork-join
graphs – P|fork − join, cij |Cmax

Polynomial 2-approximation algorithm [Aussois 2018]
Very important graph structure, realistic for many computations
Very hard to schedule optimally (maximum degree of freedom, but
order and allocation matters)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 2 / 28

Content

1 Model & approach

2 Simplifications

3 Configuration ILP

4 Results

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 3 / 28

Content

1 Model & approach

2 Simplifications

3 Configuration ILP

4 Results

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 4 / 28

Scheduling problem

Fork-join graph

jsource , jsink : source task, sink task

j ∈ J: branch task

(ρj , γ
in
j , γ

out
j) ∈ P × Γ × Γ

task size
(comp., in-comm.,
out-comm.)
only remote comm. costs!
all ∈ N0

Scheduling problem

M identical processors (machines)

minimizing makespan – OPT

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 5 / 28

Schedule

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 6 / 28

Approach overview

Idea
Formulating problem as ILP for given T , makespan < T

Binary search over makespan T
Problem: Solving ILP is NP-complete, exponential runtime in input
size

EPTAS Approach
Accuracy parameter ε > 0
EPTAS gives solution (1+ ε)OPT

Efficient complexity O(f (1/ε)× poly(n)), n not in exponent
Transforming/simplifying problem instance

eventual instance size is f (1/ε)

Use configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 7 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT
⇓ ⇑

Communication truncation, I1 Recover orig. comm. times
⇓ ⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times
⇓ ⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks

⇓
Placeholder arrangement, I4

⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks

⇓
Placeholder arrangement, I4

⇑

⇓
Gaps resolution, I5

⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks

⇓
Placeholder arrangement, I4

⇑

⇓
Gaps resolution, I5 ⇒ Binary search over T

⇒ Opt. solution for I5

↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks

⇓
Placeholder arrangement, I4

⇑

⇓
Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5

↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1 Recover orig. comm. times
⇓ ⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Approach structure

Original Instance I Solution for I , (1 + ε′)OPT
⇓ ⇑

Communication truncation, I1 Recover orig. comm. times
⇓ ⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 8 / 28

Content

1 Model & approach

2 Simplifications

3 Configuration ILP

4 Results

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 9 / 28

Simplification 1: Communication truncation

Normalise communication times: ∀γ ∈ Γ : truncate value to nearest
multiple of εT ⇒ new instance I1

Lemma (Communication truncation)
Let I1 be the instance obtained after this communication times truncation
step, and T1 be the minimum makespan for I1. Then

T1 ≤ OPT ≤ T1 + 2εT

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 10 / 28

Simplification 1: Communication truncation

Normalise communication times: ∀γ ∈ Γ : truncate value to nearest
multiple of εT ⇒ new instance I1

Lemma (Communication truncation)
Let I1 be the instance obtained after this communication times truncation
step, and T1 be the minimum makespan for I1. Then

T1 ≤ OPT ≤ T1 + 2εT

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 10 / 28

Simplification 2: Big tasks

Distinguish tasks

Big tasks: ρi ≥ ε2T

Small tasks: ρi < ε2T

Big tasks
Normalise/truncate computation
times to

{(1+ ε)nε2T | n ∈ N0}

⇒ new instance I2

Lemma (Big task truncation)
Let I2 be the instance obtained by applying this task time truncation step
to I1, and T2 be the minimum schedule makespan for I2.

T2 ≤ T1 ≤ T2 + εT

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 11 / 28

Simplification 2: Big tasks

Distinguish tasks

Big tasks: ρi ≥ ε2T

Small tasks: ρi < ε2T

Big tasks
Normalise/truncate computation
times to

{(1+ ε)nε2T | n ∈ N0}

⇒ new instance I2

Lemma (Big task truncation)
Let I2 be the instance obtained by applying this task time truncation step
to I1, and T2 be the minimum schedule makespan for I2.

T2 ≤ T1 ≤ T2 + εT

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 11 / 28

Simplification 3: Small task placeholders

Remove all small tasks Jγ
in,γout

small

Replace by placeholders tasks with uniform ρ = ε3T

Number of placeholders ∑
j∈Jγ

in,γout

small

ρj

ε3T

⇒ new instance I3

Lemma (Small tasks placeholders)
Let I3 be the instance obtained after applying this small task replacement
step to I2, and T3 be the minimum schedule makespan for I3.

T3 − εT ≤ T2 ≤ T3 + 2εT

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 12 / 28

Simplification 3: Small task placeholders

Remove all small tasks Jγ
in,γout

small

Replace by placeholders tasks with uniform ρ = ε3T

Number of placeholders ∑
j∈Jγ

in,γout

small

ρj

ε3T

⇒ new instance I3

Lemma (Small tasks placeholders)
Let I3 be the instance obtained after applying this small task replacement
step to I2, and T3 be the minimum schedule makespan for I3.

T3 − εT ≤ T2 ≤ T3 + 2εT

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 12 / 28

Simplification 3: Small task placeholders – reverse step

Schedule with placeholders

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 13 / 28

Simplification 3: Small task placeholders – reverse step

Schedule with small tasks recovered
Using a NextFit algorithm per communication size (γ in, γout)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 14 / 28

Simplification 4: Placeholder Arrangement
Placeholders created in
previous step forced into
groups

placeholders ∀γi , Jγ
in

small ,
forced into groups of 1

ε

their total processing
time ε2T
remainder in stub group
of ≤ 1

ε placeholders
⇒ new instance I4

Lemma (Placeholder grouping)
Let I4 be the instance of the problem with this restriction to the solution,
and T4 be the minimum schedule makespan for I4.

T4 − εT ≤ T3 ≤ T4

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 15 / 28

Simplification 4: Placeholder Arrangement
Placeholders created in
previous step forced into
groups

placeholders ∀γi , Jγ
in

small ,
forced into groups of 1

ε

their total processing
time ε2T
remainder in stub group
of ≤ 1

ε placeholders
⇒ new instance I4

Lemma (Placeholder grouping)
Let I4 be the instance of the problem with this restriction to the solution,
and T4 be the minimum schedule makespan for I4.

T4 − εT ≤ T3 ≤ T4

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 15 / 28

Simplification 5: Gap sizes

Idle time gaps scaled to
multiples of ε2T

same size as small task
placeholders
use filler tasks of size to
ε2T to fill idle gaps

⇒ new instance I5

Lemma (Idle gap scaling)
Let I5 be the instance where task start times are restricted in this way, and
let T5 be the minimum schedule makespan for I5.

T5 − ε2T ≤ T4 ≤ T5

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 16 / 28

Simplification 5: Gap sizes

Idle time gaps scaled to
multiples of ε2T

same size as small task
placeholders
use filler tasks of size to
ε2T to fill idle gaps

⇒ new instance I5

Lemma (Idle gap scaling)
Let I5 be the instance where task start times are restricted in this way, and
let T5 be the minimum schedule makespan for I5.

T5 − ε2T ≤ T4 ≤ T5

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 16 / 28

Content

1 Model & approach

2 Simplifications

3 Configuration ILP

4 Results

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 17 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks

⇓
Placeholder arrangement, I4

⇑

⇓
Gaps resolution, I5

⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 18 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks

⇓
Placeholder arrangement, I4

⇑

⇓
Gaps resolution, I5 ⇒ Binary search over T

⇒ Opt. solution for I5

↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 18 / 28

Problem input

Instance I5 is described by (for given T):
Nρ,γ in,γout ∀(ρ, γin, γout): number (multiplicity) of tasks of size
(ρ, γin, γout)

total number of different sizes is O(poly(1/ε))
multiplicity is also in O(poly(1/ε))

Finding valid schedule for I5 for given T :
Use configuration ILP

where configuration is order of task sizes and their multiplicity

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 19 / 28

Configurations

Configuration C :
set of tasks (multiset of task sizes
(ρ, γin, γout))
with an assumed order, with arrival
time of last edge < T

to be scheduled onto a single
processor

C : set of all needed (possible)
configurations

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 20 / 28

Constraints

Decision variables for ILP:
xC ∀C ∈ C select the number of each configuration used

ILP Constraints:
Configurations = #processors: ∑

C∈C

xC = M

All tasks scheduled:

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 21 / 28

Constraints

Decision variables for ILP:
xC ∀C ∈ C select the number of each configuration used

ILP Constraints:
Configurations = #processors: ∑

C∈C

xC = M

All tasks scheduled:

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 21 / 28

Constraints

Decision variables for ILP:
xC ∀C ∈ C select the number of each configuration used

ILP Constraints:
Configurations = #processors: ∑

C∈C

xC = M

All tasks scheduled:∑
c∈C

xCCρ,γ in,γout ≥ Nρ,γ in,γout ∀(ρ, γin, γout)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 21 / 28

Constraints

Decision variables for ILP:
xC ∀C ∈ C select the number of each configuration used

ILP Constraints:
Configurations = #processors: ∑

C∈C

xC = M

All tasks scheduled:∑
C∈C

xCCρ,γ in,γout + S+ − S ≥ Nρ,γ in,γout ∀(ρ, γin, γout)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 21 / 28

Constraints

Decision variables for ILP:
xC ∀C ∈ C select the number of each configuration used

ILP Constraints:
Configurations = #processors: ∑

C∈C

xC = M

All tasks scheduled:

∑
C∈C

xCCρ,γ in,γout + S>in
ρ,γ in+∆,γout

+ S>out
ρ,γ in,γout+∆

−S>in
ρ,γ in,γout

− S>out
ρ,γ in,γout

≥ Nρ,γ

∀(ρ, γin, γout)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 21 / 28

Obtaining a configuration

Straight forward:
One C for every valid
permutation of task
sizes/multiplicities

Better:
Only considering
permutations of execution
cost ρ & multiplicities

Possible because:
shorter communications can
be put in slot for larger
communications

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 22 / 28

Obtaining a configuration

Set of configurations C :

only valid C , i.e. last edge out < T

only maximal C , i.e. no C ∈ C is subset of other C ′ ∈ C
only dominating comm sizes (γ in, γout)

Lemma (C is complete)
There exists C ∈ C to represent any possible schedule on one processor

Lemma (Number of configurations)

The number of configurations |C | = 2O(1/ε2 log 1/ε)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 23 / 28

Obtaining a configuration

Set of configurations C :

only valid C , i.e. last edge out < T

only maximal C , i.e. no C ∈ C is subset of other C ′ ∈ C
only dominating comm sizes (γ in, γout)

Lemma (C is complete)
There exists C ∈ C to represent any possible schedule on one processor

Lemma (Number of configurations)

The number of configurations |C | = 2O(1/ε2 log 1/ε)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 23 / 28

Obtaining a configuration

Set of configurations C :

only valid C , i.e. last edge out < T

only maximal C , i.e. no C ∈ C is subset of other C ′ ∈ C
only dominating comm sizes (γ in, γout)

Lemma (C is complete)
There exists C ∈ C to represent any possible schedule on one processor

Lemma (Number of configurations)

The number of configurations |C | = 2O(1/ε2 log 1/ε)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 23 / 28

Content

1 Model & approach

2 Simplifications

3 Configuration ILP

4 Results

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 24 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3

Fill placeholders with small tasks

⇓
Placeholder arrangement, I4

⇑

⇓
Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5

↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 25 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2

Recover orig. processing times

⇓

⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 25 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1

Recover orig. comm. times

⇓

⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 25 / 28

Approach structure

Original Instance I

Solution for I , (1 + ε′)OPT

⇓

⇑

Communication truncation, I1 Recover orig. comm. times
⇓ ⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 25 / 28

Approach structure

Original Instance I Solution for I , (1 + ε′)OPT
⇓ ⇑

Communication truncation, I1 Recover orig. comm. times
⇓ ⇑

Big task truncation, I2 Recover orig. processing times
⇓ ⇑

Small task placeholders, I3 Fill placeholders with small tasks
⇓

Placeholder arrangement, I4 ⇑
⇓

Gaps resolution, I5 ⇒ Binary search over T ⇒ Opt. solution for I5
↪→ Solve configuration ILP

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 25 / 28

EPTAS schedule length

Combining the inequalities from 5 simplifcation lemmas:

(1− 2ε− ε2)T ≤ OPT ≤ (1+ 5ε)T

Final schedule obtained has makespan:

(1+ 5ε)
(1− 2ε− ε2)

OPT

To obtain accuracy parameter ε′ set

1+ ε′ =
(1+ 5ε)

(1− 2ε− ε2)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 26 / 28

EPTAS runtime

Let N = |J| be number of tasks in input of instance I .
Simplifying instance & obtaining inputs for ILP takes O(N) time
Using binary search to find T , EPTAS running is
(ILP+O(N)) · log(N)

With results from [1] runtime of ILP is:

2O(1/ε3 log2 1/ε)O(logN)

[1] K. Jansen, L. Rohwedder. “On integer programming and convolution”. arXiv:1803.04744 (2018)

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 27 / 28

Conclusion

Theorem
The EPTAS finds a schedule with makespan no longer than:

(1+ 5ε)
(1− 2ε− ε2)

OPT

in time:
2O(1/ε3 log2 1/ε)O(log2 N) +O(N logN)

Future work:
Versions for fork graphs and for join graphs
Using approach for release time and deadline scheduling

Oliver Sinnen (Uni. of Auckland) EPTAS for Scheduling Fork-Join Graphs Bordeaux, June 2019 28 / 28

	Model & approach
	Simplifications
	Configuration ILP
	Results

