
Reservation Strategies for Stochastic Jobs

Guillaume Aupy1, Ana Gainaru2, Valentin Honoré1,
Padma Raghavan2, Yves Robert3, Hongyang Sun2

1. Inria & Univ Bordeaux; 2. Vanderbilt University;
3. ENS Lyon & UTK

Datamove & Polaris Seminar, december 2018

1

Motiv: Neuroscience Applications

Often the execution time of an application is unknown before it runs.

(a) fMRIQA (b) VBMQA (c) dtiQA

Figure: Traces [2013-2016] of neuroscience apps (Vanderbilt’s medical imaging database).

These applications are input dependent, but predicting the exact execution time is hard
even when knowing the input.

2

Motiv: Computing in the cloud

Several cost models to compute in the cloud:
I On-Demand (OD): “you pay for compute capacity by per hour or per second

depending on which instances you run” (Amazon AWS).
(= Pay what you use)

I Reserved-Instances (RI): “Reserved Instances provide you with a significant
discount (up to 75%) compared to On-Demand instance pricing.”

(= Pay what you ask for)

Figure: Data extracted from AWS website, 12/10/2018.

3

Motiv: Computing in HPC

Execution time = Wait time + Runtime:

(a) Jobs that requested 204 procs. (b) Jobs that requested 409 procs.

Figure: Average wait times of jobs run on Intrepid (2009) as a function of requested runtime
(data: Parallel Workload Archive).

Observation: For a given number of processors, wait time is an increasing function of
requested time.

4

Reservation Strategies for
Stochastic Jobs

5

Stochastic Jobs

I Job execution time follows a Random Variable X.
I Distribution D
I Cumulative function (CDF) F (F (x) = P(X ≤ x))∗
I Density function (PDF) f
I Support is positive (X ∈ [minD,maxD], s.t. minD ≥ 0 and maxD ∈ R ∪ {∞})

I Deterministic jobs (two executions of the same job have the same duration).

∗most of the results assume a smooth CDF

6

Platform cost model

We consider a platform where one can request time:
I Assume a user reserves a set of resource for a time T ;
I The resources are needed for a time t.

Cost: αT + βmin(T, t) + γ (1)

α, β, γ = platform parameters

(e.g., OD: α = γ = 0, RI: β = γ = 0)

I Reservation cost: what is paid for the reservation.
I Utilization cost: what is paid for the usage.

6

Platform cost model

We consider a platform where one can request time:
I Assume a user reserves a set of resource for a time T ;
I The resources are needed for a time t.

Cost: αT + βmin(T, t) + γ (1)

α, β, γ = platform parameters

(e.g., OD: α = γ = 0, RI: β = γ = 0)

I Reservation cost: what is paid for the reservation.

I Utilization cost: what is paid for the usage.

6

Platform cost model

We consider a platform where one can request time:
I Assume a user reserves a set of resource for a time T ;
I The resources are needed for a time t.

Cost: αT + βmin(T, t) + γ (1)

α, β, γ = platform parameters

(e.g., OD: α = γ = 0, RI: β = γ = 0)

I Reservation cost: what is paid for the reservation.
I Utilization cost: what is paid for the usage.

6

Platform cost model

We consider a platform where one can request time:
I Assume a user reserves a set of resource for a time T ;
I The resources are needed for a time t.

Cost: αT + βmin(T, t) + γ (1)

α, β, γ = platform parameters (e.g., OD: α = γ = 0, RI: β = γ = 0)

I Reservation cost: what is paid for the reservation.
I Utilization cost: what is paid for the usage.

7

Reservation-based Approach

Given a job J of duration t (unknown). The user makes a reservation of time t1. Two
cases:
I t ≤ t1 The reservation is enough and the job succeeds.
I t > t1 The reservation is not enough. The job fails. The user needs to ask for another

reservation t2 > t1.

Let S = (t1, t2, . . . , tk−1, tk) be a sequence of reservations, s.t. t1 < ... < tk−1 < t ≤ tk.
The cost to the user is:

C(k, t) =

k−1∑
i=1

(αti + βti + γ) + αtk + βt+ γ

7

Reservation-based Approach

Given a job J of duration t (unknown). The user makes a reservation of time t1. Two
cases:
I t ≤ t1 The reservation is enough and the job succeeds.
I t > t1 The reservation is not enough. The job fails. The user needs to ask for another

reservation t2 > t1.

Let S = (t1, t2, . . . , tk−1, tk) be a sequence of reservations, s.t. t1 < ... < tk−1 < t ≤ tk.
The cost to the user is:

C(k, t) =

k−1∑
i=1

(αti + βti + γ) + αtk + βt+ γ

8

Optimization Problem

Given a sequence of increasing reservation S = (t1, t2, . . . , ti, ti+1, . . .).
Given a distribution of execution time X (PDF f). The expected cost of S on X is:

E(S) =
∞∑
k=1

∫ tk

tk−1

C(k, t)f(t)dt (2)

Definition (Stochastic)
Given a stochastic job of execution time X. Given α, β, γ defining a cost function
(Eq. (1)), find a reservation sequence S with minimal expected cost E(S) (Eq. (2)).

9

Take-aways

I (Almost) Caracterization of optimal sequence for any distribution!

I RI strategy is in general useful, even for stochastic job!

I Comparison to “natural” greedy strategies show the importance of the optimal
sequence.

Additionally, opens up a whole venue of new fun scheduling problems ,

9

Take-aways

I (Almost) Caracterization of optimal sequence for any distribution!

I RI strategy is in general useful, even for stochastic job!

I Comparison to “natural” greedy strategies show the importance of the optimal
sequence.

Additionally, opens up a whole venue of new fun scheduling problems ,

10

Cost function

As a preliminary lemma (warm up):

E(S) =
∞∑
k=1

∫ tk

tk−1

C(k, t)f(t)dt

= β · E[X] +

∞∑
i=0

(αti+1 + βti + γ)P(X ≥ ti)

Reminder: t0 = 0; C(k, t) =
k−1∑
i=1

(αti + βti + γ) + αtk + βt+ γ

11

Existence of a solution

Existence
Q1: Existence of a solution S = (t1, t2, . . . , ti, ti+1, . . .) with finite expected cost?

Yes†! Constructive proof: (ti)i = (minD + i)i has expectation β · E(X)+αT1+γ, where

T1 = E[X] + 1 +
α+ β

2α
(E[X2]−minD2) +

α+ β + γ

α
(E[X]−minD)

Denote So = (to1, t
o
2, · · · , toi , · · ·) an optimal sequence for Stochastic. Coro: to1 ≤ T1

†Conditions: Var[X] <∞

11

Existence of a solution

Existence
Q1: Existence of a solution S = (t1, t2, . . . , ti, ti+1, . . .) with finite expected cost?

Yes†! Constructive proof: (ti)i = (minD + i)i has expectation β · E(X)+αT1+γ, where

T1 = E[X] + 1 +
α+ β

2α
(E[X2]−minD2) +

α+ β + γ

α
(E[X]−minD)

Denote So = (to1, t
o
2, · · · , toi , · · ·) an optimal sequence for Stochastic. Coro: to1 ≤ T1

†Conditions: Var[X] <∞

12

Optimal sequence

Theorem (Optimal algorithm)
For X smooth, Stochastic reduces to finding to1 that minimizes:

∞∑
i=0

(αti+1+βti+γ)P(X≥ ti) s.t. for i ≥ 1 F (toi) = 1 or toi+1 = gX,α,β,γ(t
o
i , t

o
i−1)

I We study: S(t) = (to1, · · · , toi−1, t, t
o
i+1, · · ·)

I E[S(t)] on [toi−1, t
o
i+1] is minimized:

1 For t = toi
2 For (E[S(t)])′ = 0 (if F (toi) 6= 1)

I We get:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)

I which enables to define: gX,α,β,γ(toi , toi−1).

We are still missing to1! (by convention we set to0 = 0)

12

Optimal sequence

Theorem (Optimal algorithm)
For X smooth, Stochastic reduces to finding to1 that minimizes:

∞∑
i=0

(αti+1+βti+γ)P(X≥ ti) s.t. for i ≥ 1 F (toi) = 1 or toi+1 = gX,α,β,γ(t
o
i , t

o
i−1)

I We study: S(t) = (to1, · · · , toi−1, t, t
o
i+1, · · ·)

I E[S(t)] on [toi−1, t
o
i+1] is minimized:

1 For t = toi
2 For (E[S(t)])′ = 0 (if F (toi) 6= 1)

I We get:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)

I which enables to define: gX,α,β,γ(toi , toi−1).

We are still missing to1! (by convention we set to0 = 0)

12

Optimal sequence

Theorem (Optimal algorithm)
For X smooth, Stochastic reduces to finding to1 that minimizes:

∞∑
i=0

(αti+1+βti+γ)P(X≥ ti) s.t. for i ≥ 1 F (toi) = 1 or toi+1 = gX,α,β,γ(t
o
i , t

o
i−1)

I We study: S(t) = (to1, · · · , toi−1, t, t
o
i+1, · · ·)

I E[S(t)] on [toi−1, t
o
i+1] is minimized:

1 For t = toi
2 For (E[S(t)])′ = 0 (if F (toi) 6= 1)

I We get:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)

I which enables to define: gX,α,β,γ(toi , toi−1).

We are still missing to1! (by convention we set to0 = 0)

12

Optimal sequence

Theorem (Optimal algorithm)
For X smooth, Stochastic reduces to finding to1 that minimizes:

∞∑
i=0

(αti+1+βti+γ)P(X≥ ti) s.t. for i ≥ 1 F (toi) = 1 or toi+1 = gX,α,β,γ(t
o
i , t

o
i−1)

I We study: S(t) = (to1, · · · , toi−1, t, t
o
i+1, · · ·)

I E[S(t)] on [toi−1, t
o
i+1] is minimized:

1 For t = toi
2 For (E[S(t)])′ = 0 (if F (toi) 6= 1)

I We get:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)

I which enables to define: gX,α,β,γ(toi , toi−1).

We are still missing to1! (by convention we set to0 = 0)

12

Optimal sequence

Theorem (Optimal algorithm)
For X smooth, Stochastic reduces to finding to1 that minimizes:

∞∑
i=0

(αti+1+βti+γ)P(X≥ ti) s.t. for i ≥ 1 F (toi) = 1 or toi+1 = gX,α,β,γ(t
o
i , t

o
i−1)

I We study: S(t) = (to1, · · · , toi−1, t, t
o
i+1, · · ·)

I E[S(t)] on [toi−1, t
o
i+1] is minimized:

1 For t = toi
2 For (E[S(t)])′ = 0 (if F (toi) 6= 1)

I We get:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)

I which enables to define: gX,α,β,γ(toi , toi−1).

We are still missing to1! (by convention we set to0 = 0)

13

Brute-Force procedure for to1

We know: to1 ∈ [minD;T1] (T1 = upper bound from earlier).
I Let Sbf(t1) = (t0, t1, · · · , ti, · · ·) s.t.:{

t0 = 0,

ti = gX,α,β,γ(ti−1, ti−2) (i ≥ 2).

Brute-force procedure:
I t1 = minD +m · T1−minD

M ,∀m = 1, · · · ,M (in practice we chose M = 5000):

I Expected cost of each sequence via a Monte-Carlo process
I Randomly draw N execution time from distribution (N = 1000 here)
I Evaluate average cost over N samples of Sbf(t1) (O(MN))

I Keep the best: talgo1 .

13

Brute-Force procedure for to1

We know: to1 ∈ [minD;T1] (T1 = upper bound from earlier).
I Let Sbf(t1) = (t0, t1, · · · , ti, · · ·) s.t.:{

t0 = 0,

ti = gX,α,β,γ(ti−1, ti−2) (i ≥ 2).

Brute-force procedure:
I t1 = minD +m · T1−minD

M ,∀m = 1, · · · ,M (in practice we chose M = 5000):

I Expected cost of each sequence via a Monte-Carlo process
I Randomly draw N execution time from distribution (N = 1000 here)
I Evaluate average cost over N samples of Sbf(t1) (O(MN))

I Keep the best: talgo1 .

14

In practice, Monte-Carlo simulations

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(a) Exponential Distribution

0 2 4 6 8 10 12 14 16
t1

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(b) Weibull Distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t1

0

2

4

6

8

10

12

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(c) Gamma Distribution

Figure: Monte-Carlo simulations, normalized = Cost/E(X), α = 1, β = γ = 0.

14

In practice, Monte-Carlo simulations

0 50 100 150 200 250 300
t1

0

2

4

6

8

10

12

14

16

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(a) Lognormal Distribution

0 2 4 6 8 10 12 14 16
t1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(b) TruncatedNormal Distribution

0 1 2 3 4 5 6
t1

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(c) Pareto Distribution

Figure: Monte-Carlo simulations, normalized = Cost/E(X), α = 1, β = γ = 0.

14

In practice, Monte-Carlo simulations

0 5 10 15 20
t1

1.330

1.332

1.334

1.336

1.338

1.340

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(a) Uniform Distribution

0.0 0.2 0.4 0.6 0.8 1.0
t1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(b) Beta Distribution

0 1 2 3 4 5 6 7
t1

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(c) BoundedPareto Distribution

Figure: Monte-Carlo simulations, normalized = Cost/E(X), α = 1, β = γ = 0.

15

Dynamic programming algorithm

Theorem
If X ∼ (vi, fi)i=1...n a discrete distribution, Stochastic can be solved in polynomial time.

I Dynamic Programming algorithm:

E∗i = min
i≤j≤n

(
αvj + γ +

j∑
k=i

f ′k · βvk +
(n∑
k=j+1

f ′k

)(
βvj + E∗j+1

))

f ′k =
fk
n∑
j=i

fj

,∀k = i, . . . , n

E∗n = αvn + βvn + γ

I Complexity: O(n2)

16

Truncation and discretization

To use the previous Theorem, we can discretize a continuous probability distribution.

I Truncation + Discretization: Given a precision ε;

I Change support to [minD, Q(1− ε)‡] (for infinite support).
I Discretize the support: n discrete values: (vi, fi)i=1...n

I Two discretization schemes
Equal-probability: all discrete chunks have same probability

Equal-time: all chunks equally spaced in [minD, Q(1− ε)]

I Evaluation: ε = 10−7, n = 1000

‡Q(x) = inf{t|F (t) ≥ x}

16

Truncation and discretization

To use the previous Theorem, we can discretize a continuous probability distribution.

I Truncation + Discretization: Given a precision ε;

I Change support to [minD, Q(1− ε)‡] (for infinite support).
I Discretize the support: n discrete values: (vi, fi)i=1...n

I Two discretization schemes
Equal-probability: all discrete chunks have same probability

Equal-time: all chunks equally spaced in [minD, Q(1− ε)]

I Evaluation: ε = 10−7, n = 1000

‡Q(x) = inf{t|F (t) ≥ x}

16

Truncation and discretization

To use the previous Theorem, we can discretize a continuous probability distribution.

I Truncation + Discretization: Given a precision ε;

I Change support to [minD, Q(1− ε)‡] (for infinite support).
I Discretize the support: n discrete values: (vi, fi)i=1...n

I Two discretization schemes
Equal-probability: all discrete chunks have same probability

Equal-time: all chunks equally spaced in [minD, Q(1− ε)]

I Evaluation: ε = 10−7, n = 1000

‡Q(x) = inf{t|F (t) ≥ x}

17

General heuristics

I µ = E(X) =
∫∞
0
tf(t)dt σ2 = E(X2)− µ2

I 4 different heuristics
I Mean-by-Mean:

ti = E(X|X > ti−1) =

∫∞
ti−1

tf(t)dt

1− F (ti−1)
, ∀i ≥ 2

I Mean-Doubling:
ti = 2i−1µ, ∀i ≥ 2

I Mean-Stdev:
ti = µ+ (i− 1)σ, ∀i ≥ 2

I Median-by-Median:
ti = Q(1− 1

2i
), ∀i ≥ 2

18

Methodology

I Expected cost of sequence approximated via Monte-Carle process

I Normalization by omniscient scheduler

Eo =
∫ ∞
0

(αt+ βt+ γ)f(t)dt = (α+ β) · E[X] + γ

I Evaluation over two reservation-based scenarios:
I ReservationOnly: “pay what you request”: α = 1, β = γ = 0
I NeuroHpc:

1 waiting time: β = 1, (α, γ) by curve fitting waiting time from platform data
2 execution time: neuroscience application fitting

18

Methodology

I Expected cost of sequence approximated via Monte-Carle process
I Normalization by omniscient scheduler

Eo =
∫ ∞
0

(αt+ βt+ γ)f(t)dt = (α+ β) · E[X] + γ

I Evaluation over two reservation-based scenarios:
I ReservationOnly: “pay what you request”: α = 1, β = γ = 0
I NeuroHpc:

1 waiting time: β = 1, (α, γ) by curve fitting waiting time from platform data
2 execution time: neuroscience application fitting

18

Methodology

I Expected cost of sequence approximated via Monte-Carle process
I Normalization by omniscient scheduler

Eo =
∫ ∞
0

(αt+ βt+ γ)f(t)dt = (α+ β) · E[X] + γ

I Evaluation over two reservation-based scenarios:
I ReservationOnly: “pay what you request”: α = 1, β = γ = 0
I NeuroHpc:

1 waiting time: β = 1, (α, γ) by curve fitting waiting time from platform data
2 execution time: neuroscience application fitting

19

ReservationOnly: General heuristics performance

Distribution Brute-Force Mean-by-Mean Mean-Stdev Mean-Doub. Med-by-Med Equal-time Equal-prob.

Gamma
Uniform

TruncatedNormal
Beta

Table: Normalized expected costs. Value in brackets = expected costs normalized by
Brute-Force performance.

19

ReservationOnly: General heuristics performance

Distribution Brute-Force Mean-by-Mean Mean-Stdev Mean-Doub. Med-by-Med Equal-time Equal-prob.

Gamma 2.02 2.45 (1.21) 2.26 (1.12) 2.22 (1.10) 2.66 (1.31) 2.14 (1.06) 2.09 (1.03)
Uniform

TruncatedNormal
Beta

Table: Normalized expected costs. Value in brackets = expected costs normalized by
Brute-Force performance.

19

ReservationOnly: General heuristics performance

Distribution Brute-Force Mean-by-Mean Mean-Stdev Mean-Doub. Med-by-Med Equal-time Equal-prob.

Gamma 2.02 2.45 (1.21) 2.26 (1.12) 2.22 (1.10) 2.66 (1.31) 2.14 (1.06) 2.09 (1.03)
Uniform 1.33 2.21 (1.66) 1.86 (1.40) 1.69 (1.27) 2.22 (1.67) 1.33 (1.00) 1.33 (1.00)

TruncatedNormal
Beta

Table: Normalized expected costs. Value in brackets = expected costs normalized by
Brute-Force performance.

19

ReservationOnly: General heuristics performance

Distribution Brute-Force Mean-by-Mean Mean-Stdev Mean-Doub. Med-by-Med Equal-time Equal-prob.

Gamma 2.02 2.45 (1.21) 2.26 (1.12) 2.22 (1.10) 2.66 (1.31) 2.14 (1.06) 2.09 (1.03)
Uniform 1.33 2.21 (1.66) 1.86 (1.40) 1.69 (1.27) 2.22 (1.67) 1.33 (1.00) 1.33 (1.00)

TruncatedNormal 1.34 1.96 (1.46) 1.83 (1.36) 2.02 (1.50) 2.17 (1.61) 1.36 (1.01) 1.38 (1.03)
Beta 1.75 2.06 (1.18) 2.09 (1.19) 1.93 (1.10) 2.48 (1.42) 1.80 (1.03) 1.77 (1.01)

Table: Normalized expected costs. Value in brackets = expected costs normalized by
Brute-Force performance.

20

ReservationOnly: RI or OD?

Reserved-Instance better than On-demand:

cRI · Ẽ(S) ≤ cOD · E(X)

Ẽ(S)
E(X)

≤ cOD
cRI

0 2 4 6 8 10 12 14 16 18

Standard Deviation (minutes)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

BRUTE-FORCE

Figure: Truncated Normal distribution when σ
varies from 0 to 2µ (µ ≈ 8min).

21

ReservationOnly: Discretization performance

Distribution Equal-time Equal-probability
n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 n = 1000 n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 1000

Exponential
Lognormal
Weibull
Pareto

Uniform

Table: Normalized expected costs of the two discretization-based heuristics with different numbers
of samples in the ReservationOnly scenario.

21

ReservationOnly: Discretization performance

Distribution Equal-time Equal-probability
n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 n = 1000 n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 1000

Exponential 2.64 2.32 2.43 2.49 2.28 2.39 2.33 3.66 2.88 2.35 2.41 2.35 2.32 2.43
Lognormal 2.02 1.92 1.97 1.93 1.90 1.93 1.89 2.99 2.32 2.13 1.99 1.87 1.93 1.99
Weibull
Pareto

Uniform

Table: Normalized expected costs of the two discretization-based heuristics with different numbers
of samples in the ReservationOnly scenario.

21

ReservationOnly: Discretization performance

Distribution Equal-time Equal-probability
n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 n = 1000 n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 1000

Exponential 2.64 2.32 2.43 2.49 2.28 2.39 2.33 3.66 2.88 2.35 2.41 2.35 2.32 2.43
Lognormal 2.02 1.92 1.97 1.93 1.90 1.93 1.89 2.99 2.32 2.13 1.99 1.87 1.93 1.99
Weibull 17.00 7.15 4.45 3.33 2.49 2.56 2.44 18.69 9.03 5.14 3.60 2.88 2.47 2.57
Pareto 31.54 13.02 6.84 3.79 2.12 1.75 1.74 35.49 11.73 9.99 5.97 2.89 2.59 1.78

Uniform

Table: Normalized expected costs of the two discretization-based heuristics with different numbers
of samples in the ReservationOnly scenario.

21

ReservationOnly: Discretization performance

Distribution Equal-time Equal-probability
n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 n = 1000 n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 1000

Exponential 2.64 2.32 2.43 2.49 2.28 2.39 2.33 3.66 2.88 2.35 2.41 2.35 2.32 2.43
Lognormal 2.02 1.92 1.97 1.93 1.90 1.93 1.89 2.99 2.32 2.13 1.99 1.87 1.93 1.99
Weibull 17.00 7.15 4.45 3.33 2.49 2.56 2.44 18.69 9.03 5.14 3.60 2.88 2.47 2.57
Pareto 31.54 13.02 6.84 3.79 2.12 1.75 1.74 35.49 11.73 9.99 5.97 2.89 2.59 1.78

Uniform 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33

Table: Normalized expected costs of the two discretization-based heuristics with different numbers
of samples in the ReservationOnly scenario.

22

NeuroHpc scenario results

Instantiation from Neuroscience app (LogNormal distrib) + Intrepid waiting time cost.

0.5 1.0 1.5 2.0 2.5 3.0

Mean (hours)

0

1

2

3

4

5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

BRUTE-FORCE

MEAN-BY-MEAN

MEAN-STDEV

MEAN-DOUB.
MED-BY-MED

EQUAL-TIME

EQUAL-PROB.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Standard Deviation (hours)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

BRUTE-FORCE

MEAN-BY-MEAN

MEAN-STDEV

MEAN-DOUB.
MED-BY-MED

EQUAL-TIME

EQUAL-PROB.

Figure: Impact of the mean or standard deviation in NeuroHpc scenario (µ = 7.1128, σ = 0.2039)
with α = 0.95, β = 1.0, γ = 1.05.

Perspectives

I Contributions
I Existence of optimal reservation sequence
I Characterization up to duration of first reservation to1
I Upper-bound on to1
I Heuristics and comprehensive simulation results

I Future works
I Requests with variable amount of resources (time + # processors)
I Checkpoints at the end of some/all reservations
I Trade-off

I useful works under reservations
I sacrifice of time to avoid losing all curent reservation work

Thanks

	Motivation
	Models
	Stochastic Jobs
	Cost Model
	Objective

	Characterizing Optimal Solution
	Properties of Optimal Sequences

	Heuristics for Arbitrary Distributions
	Brute-force on to1
	Discretization-based dynamic programming
	Other heuristics

	Simulation Results
	Results for ReservationOnly scenario
	Results for NeuroHpc scenario

	Perspectives

